from random import shuffle from examples.pipeline.wiki_entity_linking import kb_creator import numpy as np from spacy._ml import zero_init, create_default_optimizer from spacy.cli.pretrain import get_cossim_loss from thinc.v2v import Model from thinc.api import chain from thinc.neural._classes.affine import Affine class EntityEncoder: INPUT_DIM = 300 # dimension of pre-trained vectors DESC_WIDTH = 64 DROP = 0 EPOCHS = 5 STOP_THRESHOLD = 0.05 BATCH_SIZE = 1000 def __init__(self, kb, nlp): self.nlp = nlp self.kb = kb def run(self, entity_descr_output): id_to_descr = kb_creator._get_id_to_description(entity_descr_output) processed, loss = self._train_model(entity_descr_output, id_to_descr) print("Trained on", processed, "entities across", self.EPOCHS, "epochs") print("Final loss:", loss) print() # TODO: apply and write to file afterwards ! # self._apply_encoder(id_to_descr) def _train_model(self, entity_descr_output, id_to_descr): # TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy self._build_network(self.INPUT_DIM, self.DESC_WIDTH) processed = 0 loss = 1 for i in range(self.EPOCHS): entity_keys = list(id_to_descr.keys()) shuffle(entity_keys) batch_nr = 0 start = 0 stop = min(self.BATCH_SIZE, len(entity_keys)) while loss > self.STOP_THRESHOLD and start < len(entity_keys): batch = [] for e in entity_keys[start:stop]: descr = id_to_descr[e] doc = self.nlp(descr) doc_vector = self._get_doc_embedding(doc) batch.append(doc_vector) loss = self.update(batch) print(i, batch_nr, loss) processed += len(batch) batch_nr += 1 start = start + self.BATCH_SIZE stop = min(stop + self.BATCH_SIZE, len(entity_keys)) return processed, loss def _apply_encoder(self, id_to_descr): for id, descr in id_to_descr.items(): doc = self.nlp(descr) doc_vector = self._get_doc_embedding(doc) encoding = self.encoder(np.asarray([doc_vector])) @staticmethod def _get_doc_embedding(doc): indices = np.zeros((len(doc),), dtype="i") for i, word in enumerate(doc): if word.orth in doc.vocab.vectors.key2row: indices[i] = doc.vocab.vectors.key2row[word.orth] else: indices[i] = 0 word_vectors = doc.vocab.vectors.data[indices] doc_vector = np.mean(word_vectors, axis=0) # TODO: min? max? return doc_vector def _build_network(self, orig_width, hidden_with): with Model.define_operators({">>": chain}): self.encoder = ( Affine(hidden_with, orig_width) ) self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0)) self.sgd = create_default_optimizer(self.model.ops) def update(self, vectors): predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP) loss, d_scores = self.get_loss(scores=predictions, golds=np.asarray(vectors)) bp_model(d_scores, sgd=self.sgd) return loss / len(vectors) @staticmethod def get_loss(golds, scores): loss, gradients = get_cossim_loss(scores, golds) return loss, gradients