2015-08-24 03:25:55 +00:00
|
|
|
import json
|
|
|
|
from os import path
|
|
|
|
from collections import defaultdict
|
2015-11-06 16:24:30 +00:00
|
|
|
from libc.string cimport memset
|
2015-08-24 03:25:55 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
from cymem.cymem cimport Pool
|
2015-08-24 03:25:55 +00:00
|
|
|
from thinc.typedefs cimport atom_t, weight_t
|
2015-11-06 16:24:30 +00:00
|
|
|
from thinc.api cimport Example, ExampleC
|
|
|
|
from thinc.features cimport ConjunctionExtracter
|
2015-08-24 03:25:55 +00:00
|
|
|
|
|
|
|
from .typedefs cimport attr_t
|
|
|
|
from .tokens.doc cimport Doc
|
|
|
|
from .attrs cimport TAG
|
|
|
|
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
|
2015-08-27 07:16:11 +00:00
|
|
|
from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE
|
2015-08-24 03:25:55 +00:00
|
|
|
|
2015-08-26 17:19:21 +00:00
|
|
|
from .attrs cimport *
|
|
|
|
|
2015-08-24 03:25:55 +00:00
|
|
|
|
2015-08-26 17:19:21 +00:00
|
|
|
cpdef enum:
|
|
|
|
P2_orth
|
|
|
|
P2_cluster
|
|
|
|
P2_shape
|
|
|
|
P2_prefix
|
|
|
|
P2_suffix
|
|
|
|
P2_pos
|
|
|
|
P2_lemma
|
|
|
|
P2_flags
|
|
|
|
|
|
|
|
P1_orth
|
|
|
|
P1_cluster
|
|
|
|
P1_shape
|
|
|
|
P1_prefix
|
|
|
|
P1_suffix
|
|
|
|
P1_pos
|
|
|
|
P1_lemma
|
|
|
|
P1_flags
|
|
|
|
|
|
|
|
W_orth
|
|
|
|
W_cluster
|
|
|
|
W_shape
|
|
|
|
W_prefix
|
|
|
|
W_suffix
|
|
|
|
W_pos
|
|
|
|
W_lemma
|
|
|
|
W_flags
|
|
|
|
|
|
|
|
N1_orth
|
|
|
|
N1_cluster
|
|
|
|
N1_shape
|
|
|
|
N1_prefix
|
|
|
|
N1_suffix
|
|
|
|
N1_pos
|
|
|
|
N1_lemma
|
|
|
|
N1_flags
|
|
|
|
|
|
|
|
N2_orth
|
|
|
|
N2_cluster
|
|
|
|
N2_shape
|
|
|
|
N2_prefix
|
|
|
|
N2_suffix
|
|
|
|
N2_pos
|
|
|
|
N2_lemma
|
|
|
|
N2_flags
|
|
|
|
|
|
|
|
N_CONTEXT_FIELDS
|
2015-08-24 03:25:55 +00:00
|
|
|
|
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
cdef class TaggerModel(AveragedPerceptron):
|
|
|
|
cdef void set_features(self, ExampleC* eg, const TokenC* tokens, int i) except *:
|
|
|
|
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
|
|
|
|
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
|
|
|
|
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
|
|
|
|
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
|
|
|
|
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
|
|
|
|
|
|
|
|
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
|
|
|
|
|
|
|
cdef void update(self, ExampleC* eg) except *:
|
|
|
|
self.updater.update(eg)
|
|
|
|
|
|
|
|
|
|
|
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
|
|
|
context[0] = t.lex.lower
|
|
|
|
context[1] = t.lex.cluster
|
|
|
|
context[2] = t.lex.shape
|
|
|
|
context[3] = t.lex.prefix
|
|
|
|
context[4] = t.lex.suffix
|
|
|
|
context[5] = t.tag
|
|
|
|
context[6] = t.lemma
|
|
|
|
if t.lex.flags & (1 << IS_ALPHA):
|
|
|
|
context[7] = 1
|
|
|
|
elif t.lex.flags & (1 << IS_PUNCT):
|
|
|
|
context[7] = 2
|
|
|
|
elif t.lex.flags & (1 << LIKE_URL):
|
|
|
|
context[7] = 3
|
|
|
|
elif t.lex.flags & (1 << LIKE_NUM):
|
|
|
|
context[7] = 4
|
|
|
|
else:
|
|
|
|
context[7] = 0
|
|
|
|
|
|
|
|
|
2015-08-24 03:25:55 +00:00
|
|
|
cdef class Tagger:
|
|
|
|
"""A part-of-speech tagger for English"""
|
2015-08-26 17:19:21 +00:00
|
|
|
@classmethod
|
|
|
|
def read_config(cls, data_dir):
|
|
|
|
return json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def default_templates(cls):
|
|
|
|
return (
|
|
|
|
(W_orth,),
|
|
|
|
(P1_lemma, P1_pos),
|
|
|
|
(P2_lemma, P2_pos),
|
|
|
|
(N1_orth,),
|
|
|
|
(N2_orth,),
|
|
|
|
|
|
|
|
(W_suffix,),
|
|
|
|
(W_prefix,),
|
|
|
|
|
|
|
|
(P1_pos,),
|
|
|
|
(P2_pos,),
|
|
|
|
(P1_pos, P2_pos),
|
|
|
|
(P1_pos, W_orth),
|
|
|
|
(P1_suffix,),
|
|
|
|
(N1_suffix,),
|
|
|
|
|
|
|
|
(W_shape,),
|
|
|
|
(W_cluster,),
|
|
|
|
(N1_cluster,),
|
|
|
|
(N2_cluster,),
|
|
|
|
(P1_cluster,),
|
|
|
|
(P2_cluster,),
|
|
|
|
|
|
|
|
(W_flags,),
|
|
|
|
(N1_flags,),
|
|
|
|
(N2_flags,),
|
|
|
|
(P1_flags,),
|
|
|
|
(P2_flags,),
|
|
|
|
)
|
|
|
|
|
2015-08-27 07:16:11 +00:00
|
|
|
@classmethod
|
|
|
|
def blank(cls, vocab, templates):
|
2015-11-07 07:25:17 +00:00
|
|
|
model = TaggerModel(vocab.morphology.n_tags,
|
|
|
|
ConjunctionExtracter(N_CONTEXT_FIELDS, templates))
|
2015-08-27 07:16:11 +00:00
|
|
|
return cls(vocab, model)
|
2015-08-24 03:25:55 +00:00
|
|
|
|
2015-08-27 07:16:11 +00:00
|
|
|
@classmethod
|
2015-12-07 05:01:28 +00:00
|
|
|
def from_package(cls, package, vocab):
|
|
|
|
# TODO: templates.json deprecated? not present in latest package
|
|
|
|
templates = package.load_utf8(json.load,
|
|
|
|
'data', 'pos', 'templates.json',
|
|
|
|
default=cls.default_templates())
|
|
|
|
|
2015-11-07 07:25:17 +00:00
|
|
|
model = TaggerModel(vocab.morphology.n_tags,
|
|
|
|
ConjunctionExtracter(N_CONTEXT_FIELDS, templates))
|
2015-12-07 05:01:28 +00:00
|
|
|
|
|
|
|
model.load(package.file_path('data', 'pos', 'model', require=False)) # TODO: really optional?
|
|
|
|
|
2015-08-27 07:16:11 +00:00
|
|
|
return cls(vocab, model)
|
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
def __init__(self, Vocab vocab, TaggerModel model):
|
2015-08-26 17:19:21 +00:00
|
|
|
self.vocab = vocab
|
2015-08-27 07:16:11 +00:00
|
|
|
self.model = model
|
2015-08-26 17:19:21 +00:00
|
|
|
|
2015-08-27 07:16:11 +00:00
|
|
|
# TODO: Move this to tag map
|
2015-08-24 03:25:55 +00:00
|
|
|
self.freqs = {TAG: defaultdict(int)}
|
|
|
|
for tag in self.tag_names:
|
2015-08-26 17:19:21 +00:00
|
|
|
self.freqs[TAG][self.vocab.strings[tag]] = 1
|
2015-08-24 03:25:55 +00:00
|
|
|
self.freqs[TAG][0] = 1
|
|
|
|
|
2015-08-26 17:19:21 +00:00
|
|
|
@property
|
|
|
|
def tag_names(self):
|
2015-08-28 01:44:54 +00:00
|
|
|
return self.vocab.morphology.tag_names
|
2015-08-26 17:19:21 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
def __reduce__(self):
|
|
|
|
return (self.__class__, (self.vocab, self.model), None, None)
|
|
|
|
|
|
|
|
def tag_from_strings(self, Doc tokens, object tag_strs):
|
|
|
|
cdef int i
|
|
|
|
for i in range(tokens.length):
|
|
|
|
self.vocab.morphology.assign_tag(&tokens.c[i], tag_strs[i])
|
|
|
|
tokens.is_tagged = True
|
|
|
|
tokens._py_tokens = [None] * tokens.length
|
|
|
|
|
2015-08-24 03:25:55 +00:00
|
|
|
def __call__(self, Doc tokens):
|
|
|
|
"""Apply the tagger, setting the POS tags onto the Doc object.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens (Doc): The tokens to be tagged.
|
|
|
|
"""
|
|
|
|
if tokens.length == 0:
|
|
|
|
return 0
|
2015-11-05 13:25:59 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
cdef Pool mem = Pool()
|
|
|
|
cdef ExampleC eg
|
2015-10-12 08:33:11 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
cdef int i, tag
|
2015-08-24 03:25:55 +00:00
|
|
|
for i in range(tokens.length):
|
2015-11-06 16:24:30 +00:00
|
|
|
if tokens.c[i].pos == 0:
|
|
|
|
eg = self.model.allocate(mem)
|
|
|
|
self.model.set_features(&eg, tokens.c, i)
|
|
|
|
self.model.set_prediction(&eg)
|
|
|
|
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
2015-08-24 03:25:55 +00:00
|
|
|
tokens.is_tagged = True
|
|
|
|
tokens._py_tokens = [None] * tokens.length
|
2015-11-06 16:24:30 +00:00
|
|
|
|
2015-08-24 03:25:55 +00:00
|
|
|
def train(self, Doc tokens, object gold_tag_strs):
|
2015-08-27 07:16:11 +00:00
|
|
|
assert len(tokens) == len(gold_tag_strs)
|
2015-11-06 16:24:30 +00:00
|
|
|
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
|
|
|
cdef int correct = 0
|
|
|
|
cdef Pool mem = Pool()
|
|
|
|
cdef ExampleC eg
|
2015-08-24 03:25:55 +00:00
|
|
|
for i in range(tokens.length):
|
2015-11-06 16:24:30 +00:00
|
|
|
eg = self.model.allocate(mem)
|
|
|
|
self.model.set_features(&eg, tokens.c, i)
|
|
|
|
self.model.set_costs(&eg, golds[i])
|
|
|
|
self.model.set_prediction(&eg)
|
|
|
|
self.model.update(&eg)
|
2015-08-28 00:02:33 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
2015-08-28 00:02:33 +00:00
|
|
|
|
2015-11-06 16:24:30 +00:00
|
|
|
correct += eg.cost == 0
|
2015-11-03 13:15:14 +00:00
|
|
|
self.freqs[TAG][tokens.c[i].tag] += 1
|
2015-11-06 16:24:30 +00:00
|
|
|
tokens.is_tagged = True
|
|
|
|
tokens._py_tokens = [None] * tokens.length
|
2015-08-24 03:25:55 +00:00
|
|
|
return correct
|