mirror of https://github.com/explosion/spaCy.git
145 lines
5.5 KiB
Cython
145 lines
5.5 KiB
Cython
|
import json
|
||
|
from os import path
|
||
|
from collections import defaultdict
|
||
|
|
||
|
from thinc.typedefs cimport atom_t, weight_t
|
||
|
|
||
|
from .typedefs cimport attr_t
|
||
|
from .tokens.doc cimport Doc
|
||
|
from .morphology cimport set_morph_from_dict
|
||
|
from .attrs cimport TAG
|
||
|
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
|
||
|
from .parts_of_speech cimport PRT, VERB, X, PUNCT, EOL, SPACE
|
||
|
|
||
|
|
||
|
cdef struct _CachedMorph:
|
||
|
Morphology morph
|
||
|
int lemma
|
||
|
|
||
|
|
||
|
cdef class Tagger:
|
||
|
"""A part-of-speech tagger for English"""
|
||
|
def make_lemmatizer(self):
|
||
|
return None
|
||
|
|
||
|
def __init__(self, StringStore strings, data_dir):
|
||
|
self.mem = Pool()
|
||
|
model_dir = path.join(data_dir, 'pos')
|
||
|
self.strings = strings
|
||
|
cfg = json.load(open(path.join(data_dir, 'pos', 'config.json')))
|
||
|
self.tag_names = sorted(cfg['tag_names'])
|
||
|
assert self.tag_names
|
||
|
self.n_tags = len(self.tag_names)
|
||
|
self.tag_map = cfg['tag_map']
|
||
|
cdef int n_tags = len(self.tag_names) + 1
|
||
|
|
||
|
self.model = Model(n_tags, cfg['templates'], model_dir)
|
||
|
self._morph_cache = PreshMapArray(n_tags)
|
||
|
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
|
||
|
for i, tag in enumerate(sorted(self.tag_names)):
|
||
|
pos, props = self.tag_map[tag]
|
||
|
self.tags[i].id = i
|
||
|
self.tags[i].pos = pos
|
||
|
set_morph_from_dict(&self.tags[i].morph, props)
|
||
|
if path.exists(path.join(data_dir, 'tokenizer', 'morphs.json')):
|
||
|
self.load_morph_exceptions(json.load(open(path.join(data_dir, 'tokenizer',
|
||
|
'morphs.json'))))
|
||
|
self.lemmatizer = self.make_lemmatizer(data_dir)
|
||
|
self.freqs = {TAG: defaultdict(int)}
|
||
|
for tag in self.tag_names:
|
||
|
self.freqs[TAG][self.strings[tag]] = 1
|
||
|
self.freqs[TAG][0] = 1
|
||
|
|
||
|
def __call__(self, Doc tokens):
|
||
|
"""Apply the tagger, setting the POS tags onto the Doc object.
|
||
|
|
||
|
Args:
|
||
|
tokens (Doc): The tokens to be tagged.
|
||
|
"""
|
||
|
if tokens.length == 0:
|
||
|
return 0
|
||
|
cdef int i
|
||
|
cdef const weight_t* scores
|
||
|
for i in range(tokens.length):
|
||
|
if tokens.data[i].pos == 0:
|
||
|
guess = self.predict(i, tokens.data)
|
||
|
tokens.data[i].tag = self.strings[self.tag_names[guess]]
|
||
|
self.set_morph(i, &self.tags[guess], tokens.data)
|
||
|
|
||
|
tokens.is_tagged = True
|
||
|
tokens._py_tokens = [None] * tokens.length
|
||
|
|
||
|
def tag_from_strings(self, Doc tokens, object tag_strs):
|
||
|
cdef int i
|
||
|
for i in range(tokens.length):
|
||
|
tokens.data[i].tag = self.strings[tag_strs[i]]
|
||
|
self.set_morph(i, &self.tags[self.tag_names.index(tag_strs[i])],
|
||
|
tokens.data)
|
||
|
tokens.is_tagged = True
|
||
|
tokens._py_tokens = [None] * tokens.length
|
||
|
|
||
|
def train(self, Doc tokens, object gold_tag_strs):
|
||
|
cdef int i
|
||
|
cdef int loss
|
||
|
cdef const weight_t* scores
|
||
|
golds = [self.tag_names.index(g) if g is not None else -1
|
||
|
for g in gold_tag_strs]
|
||
|
correct = 0
|
||
|
for i in range(tokens.length):
|
||
|
guess = self.update(i, tokens.data, golds[i])
|
||
|
loss = golds[i] != -1 and guess != golds[i]
|
||
|
tokens.data[i].tag = self.strings[self.tag_names[guess]]
|
||
|
self.set_morph(i, &self.tags[guess], tokens.data)
|
||
|
correct += loss == 0
|
||
|
self.freqs[TAG][tokens.data[i].tag] += 1
|
||
|
return correct
|
||
|
|
||
|
cdef int predict(self, int i, const TokenC* tokens) except -1:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
cdef int update(self, int i, const TokenC* tokens, int gold) except -1:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
cdef int set_morph(self, const int i, const PosTag* tag, TokenC* tokens) except -1:
|
||
|
tokens[i].pos = tag.pos
|
||
|
cached = <_CachedMorph*>self._morph_cache.get(tag.id, tokens[i].lex.orth)
|
||
|
if cached is NULL:
|
||
|
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
|
||
|
cached.lemma = self.lemmatize(tag.pos, tokens[i].lex)
|
||
|
cached.morph = tag.morph
|
||
|
self._morph_cache.set(tag.id, tokens[i].lex.orth, <void*>cached)
|
||
|
tokens[i].lemma = cached.lemma
|
||
|
tokens[i].morph = cached.morph
|
||
|
|
||
|
cdef int lemmatize(self, const univ_pos_t pos, const LexemeC* lex) except -1:
|
||
|
if self.lemmatizer is None:
|
||
|
return lex.orth
|
||
|
cdef unicode py_string = self.strings[lex.orth]
|
||
|
if pos != NOUN and pos != VERB and pos != ADJ:
|
||
|
return lex.orth
|
||
|
cdef set lemma_strings
|
||
|
cdef unicode lemma_string
|
||
|
lemma_strings = self.lemmatizer(py_string, pos)
|
||
|
lemma_string = sorted(lemma_strings)[0]
|
||
|
lemma = self.strings[lemma_string]
|
||
|
return lemma
|
||
|
|
||
|
def load_morph_exceptions(self, dict exc):
|
||
|
cdef unicode pos_str
|
||
|
cdef unicode form_str
|
||
|
cdef unicode lemma_str
|
||
|
cdef dict entries
|
||
|
cdef dict props
|
||
|
cdef int lemma
|
||
|
cdef attr_t orth
|
||
|
cdef int pos
|
||
|
for pos_str, entries in exc.items():
|
||
|
pos = self.tag_names.index(pos_str)
|
||
|
for form_str, props in entries.items():
|
||
|
lemma_str = props.get('L', form_str)
|
||
|
orth = self.strings[form_str]
|
||
|
cached = <_CachedMorph*>self.mem.alloc(1, sizeof(_CachedMorph))
|
||
|
cached.lemma = self.strings[lemma_str]
|
||
|
set_morph_from_dict(&cached.morph, props)
|
||
|
self._morph_cache.set(pos, orth, <void*>cached)
|