spaCy/spacy/syntax/parser.pyx

463 lines
16 KiB
Cython
Raw Normal View History

2014-12-16 11:44:43 +00:00
"""
MALT-style dependency parser
"""
2017-04-15 11:05:15 +00:00
# coding: utf-8
# cython: infer_types=True
2014-12-16 11:44:43 +00:00
from __future__ import unicode_literals
2017-04-15 11:05:15 +00:00
from collections import Counter
import ujson
2014-12-16 11:44:43 +00:00
cimport cython
2016-02-05 11:20:42 +00:00
cimport cython.parallel
import numpy.random
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 16:38:41 +00:00
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
2017-04-15 11:05:15 +00:00
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
2016-02-01 02:08:42 +00:00
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
2017-03-10 17:21:21 +00:00
2014-12-16 11:44:43 +00:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
2017-04-15 11:05:15 +00:00
from .nonproj import PseudoProjectivity
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
2014-12-16 11:44:43 +00:00
2017-04-16 16:02:42 +00:00
USE_FTRL = True
2015-04-19 08:31:31 +00:00
DEBUG = False
2014-12-16 11:44:43 +00:00
def set_debug(val):
global DEBUG
DEBUG = val
2017-05-04 10:17:36 +00:00
@layerize
def get_context_tokens(states, drop=0.):
for state in states:
context[i, 0] = state.B(0)
context[i, 1] = state.S(0)
context[i, 2] = state.S(1)
context[i, 3] = state.L(state.S(0), 1)
context[i, 4] = state.L(state.S(0), 2)
context[i, 5] = state.R(state.S(0), 1)
context[i, 6] = state.R(state.S(0), 2)
return (context, states), None
def extract_features(attrs):
def forward(contexts_states, drop=0.):
contexts, states = contexts_states
for i, state in enumerate(states):
for j, tok_i in enumerate(contexts[i]):
token = state.get_token(tok_i)
for k, attr in enumerate(attrs):
output[i, j, k] = getattr(token, attr)
return output, None
return layerize(forward)
def build_tok2vec(lang, width, depth, embed_size):
cols = [LEX_ID, PREFIX, SUFFIX, SHAPE]
static = StaticVectors('en', width, column=cols.index(LEX_ID))
prefix = HashEmbed(width, embed_size, column=cols.index(PREFIX))
suffix = HashEmbed(width, embed_size, column=cols.index(SUFFIX))
shape = HashEmbed(width, embed_size, column=cols.index(SHAPE))
with Model.overload_operaters('>>': chain, '|': concatenate, '+': add):
tok2vec = (
extract_features(cols)
>> (static | prefix | suffix | shape)
>> (ExtractWindow(nW=1) >> Maxout(width)) ** depth
)
return tok2vec
def build_parse2vec(width, embed_size):
cols = [TAG, DEP]
tag_vector = HashEmbed(width, 1000, column=cols.index(TAG))
dep_vector = HashEmbed(width, 1000, column=cols.index(DEP))
with Model.overload_operaters('>>': chain):
model = (
extract_features([TAG, DEP])
>> (tag_vector | dep_vector)
)
return model
def build_model(get_contexts, tok2vec, parse2vec, width, depth, nr_class):
with Model.overload_operaters('>>': chain):
model = (
get_contexts
>> (tok2vec | parse2vec)
>> Maxout(width) ** depth
>> Softmax(nr_class)
)
return model
cdef class Parser:
2017-04-15 11:05:15 +00:00
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
2017-04-15 11:05:15 +00:00
"""
Load the statistical model from the supplied path.
2016-11-01 11:25:36 +00:00
Arguments:
path (Path):
The path to load from.
vocab (Vocab):
The vocabulary. Must be shared by the documents to be processed.
require (bool):
Whether to raise an error if the files are not found.
Returns (Parser):
The newly constructed object.
"""
with (path / 'config.json').open() as file_:
2017-04-15 11:05:15 +00:00
cfg = ujson.load(file_)
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
if (path / 'model').exists():
self.model.load(str(path / 'model'))
elif require:
raise IOError(
"Required file %s/model not found when loading" % str(path))
return self
2017-05-04 10:17:36 +00:00
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
2017-04-15 11:05:15 +00:00
"""
Create a Parser.
2016-11-01 11:25:36 +00:00
Arguments:
vocab (Vocab):
The vocabulary object. Must be shared with documents to be processed.
2017-05-04 10:17:36 +00:00
model (thinc Model):
2016-11-01 11:25:36 +00:00
The statistical model.
Returns (Parser):
The newly constructed object.
"""
if TransitionSystem is None:
TransitionSystem = self.TransitionSystem
self.vocab = vocab
cfg['actions'] = TransitionSystem.get_actions(**cfg)
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
2017-05-04 10:17:36 +00:00
if model is None:
model = self.build_model(**cfg)
self.model = model
self.cfg = cfg
2017-05-04 10:17:36 +00:00
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
2017-04-15 11:05:15 +00:00
"""
2017-05-04 10:17:36 +00:00
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
2016-11-01 11:25:36 +00:00
Arguments:
doc (Doc): The document to be processed.
Returns:
None
"""
2017-05-04 10:17:36 +00:00
self.parse_batch([tokens])
self.moves.finalize_doc(tokens)
2016-01-30 19:27:07 +00:00
2017-05-04 10:17:36 +00:00
def parse_batch(self, docs):
states = self._init_states(docs)
todo = list(states)
nr_class = self.moves.n_moves
while todo:
scores = self.model.predict(todo)
self._validate_batch(is_valid, scores, states)
for state, guess in zip(todo, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state, action.label)
todo = [state for state in todo if not state.is_final()]
for state, doc in zip(states, docs):
self.moves.finalize_state(state, doc)
def pipe(self, stream, int batch_size=1000, int n_threads=2):
2017-04-15 11:05:15 +00:00
"""
Process a stream of documents.
2016-11-01 11:25:36 +00:00
Arguments:
stream: The sequence of documents to process.
batch_size (int):
The number of documents to accumulate into a working set.
n_threads (int):
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef Pool mem = Pool()
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
2016-02-05 18:37:50 +00:00
queue.append(doc)
if len(queue) == batch_size:
2017-05-04 10:17:36 +00:00
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
2017-05-04 10:17:36 +00:00
if queue:
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
return self.update([docs], [golds], drop=drop)
states = self._init_states(docs)
nr_class = self.moves.n_moves
2017-05-04 10:17:36 +00:00
while states:
scores, finish_update = self.model.begin_update(states, drop=drop)
self._validate_batch(is_valid, scores, states)
for i, state in enumerate(states):
self.moves.set_costs(costs[i], is_valid, state, golds[i])
self._transition_batch(states, scores)
self._set_gradient(gradients, scores, costs)
finish_update(gradients, sgd=sgd)
gradients.fill(0)
states = [state for state in states if not state.is_final()]
gradients = gradients[:len(states)]
costs = costs[:len(states)]
return 0
2017-05-04 10:17:36 +00:00
def _validate_batch(self, is_valid, scores, states):
for i, state in enumerate(states):
self.moves.set_valid(is_valid, state)
for j in range(self.moves.n_moves):
if not is_valid[j]:
scores[i, j] = 0
2017-05-04 10:17:36 +00:00
def _transition_batch(self, states, scores):
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state, action.label)
2017-05-04 10:17:36 +00:00
def _init_states(self, docs):
states = []
cdef Doc doc
for i, doc in enumerate(docs):
state = StateClass.init(doc)
self.moves.initialize_state(state)
return states
def _set_gradient(self, gradients, scores, costs):
"""Do multi-label log loss"""
cdef double Z, gZ, max_, g_max
maxes = scores.max(axis=1)
g_maxes = (scores * costs <= 0).max(axis=1)
exps = (scores-maxes).exp()
g_exps = (g_scores-g_maxes).exp()
Zs = exps.sum(axis=1)
gZs = g_exps.sum(axis=1)
logprob = exps / Zs
g_logprob = g_exps / gZs
gradients[:] = logprob - g_logprob
def step_through(self, Doc doc, GoldParse gold=None):
2017-04-15 11:05:15 +00:00
"""
Set up a stepwise state, to introspect and control the transition sequence.
2016-11-01 11:25:36 +00:00
Arguments:
doc (Doc): The document to step through.
gold (GoldParse): Optional gold parse
2016-11-01 11:25:36 +00:00
Returns (StepwiseState):
A state object, to step through the annotation process.
"""
return StepwiseState(self, doc, gold=gold)
def from_transition_sequence(self, Doc doc, sequence):
2016-11-01 11:25:36 +00:00
"""Control the annotations on a document by specifying a transition sequence
to follow.
Arguments:
doc (Doc): The document to annotate.
sequence: A sequence of action names, as unicode strings.
Returns: None
"""
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
# Doesn't set label into serializer -- subclasses override it to do that.
for action in self.moves.action_types:
2017-04-15 14:00:28 +00:00
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
2017-04-15 14:00:28 +00:00
self.cfg.setdefault('extra_labels', []).append(label)
2017-03-08 00:38:51 +00:00
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
if prob <= 0 or prob >= 1.:
return 0
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
cdef double* probs = &py_probs[0]
for i in range(nr_feat):
if probs[i] >= prob:
feats[i].value /= prob
else:
feats[i].value = 0.
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
2017-04-15 11:35:01 +00:00
if gold is not None:
self.gold = gold
2017-04-15 14:00:28 +00:00
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
2015-11-03 13:15:14 +00:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
2017-04-15 11:05:15 +00:00
"""
Find the action-costs for the current state.
"""
2017-04-15 11:35:01 +00:00
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
2017-03-10 17:21:21 +00:00
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 03:58:43 +00:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
2016-10-12 12:35:55 +00:00
def __init__(self, doc):
2016-10-12 12:44:31 +00:00
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 03:58:43 +00:00
mode = i
score = scores[i]
return mode