2017-10-03 12:26:20 +00:00
|
|
|
//- 💫 DOCS > USAGE > FACTS & FIGURES > BENCHMARKS > MODEL COMPARISON
|
|
|
|
|
|
|
|
p
|
|
|
|
| In this section, we provide benchmark accuracies for the pre-trained
|
|
|
|
| model pipelines we distribute with spaCy. Evaluations are conducted
|
|
|
|
| end-to-end from raw text, with no "gold standard" pre-processing, over
|
2017-11-06 17:19:00 +00:00
|
|
|
| text from a mix of genres where possible. For are more detailed
|
|
|
|
| comparison of the available models, see the new
|
|
|
|
| #[+a("/models/comparison") model comparison tool].
|
2017-10-03 12:26:20 +00:00
|
|
|
|
|
|
|
+aside("Methodology")
|
|
|
|
| The evaluation was conducted on raw text with no gold standard
|
|
|
|
| information. The parser, tagger and entity recognizer were trained on the
|
|
|
|
| #[+a("https://www.gabormelli.com/RKB/OntoNotes_Corpus") OntoNotes 5]
|
|
|
|
| corpus, the word vectors on #[+a("http://commoncrawl.org") Common Crawl].
|
|
|
|
|
2017-10-06 19:39:06 +00:00
|
|
|
+h(4, "benchmarks-models-english") English
|
|
|
|
|
2017-10-03 12:26:20 +00:00
|
|
|
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
|
|
|
|
+row
|
2017-11-06 17:19:00 +00:00
|
|
|
+cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0a8
|
2017-10-03 12:26:20 +00:00
|
|
|
each data in ["2.x", "neural"]
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num")=data
|
|
|
|
+cell("num") 91.7
|
|
|
|
+cell("num") 85.3
|
|
|
|
+cell("num") 97.0
|
|
|
|
+cell("num") 10.1k
|
|
|
|
+cell("num") #[strong 35MB]
|
2017-10-03 12:26:20 +00:00
|
|
|
|
|
|
|
+row
|
2017-11-06 17:19:00 +00:00
|
|
|
+cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0a3
|
2017-10-03 12:26:20 +00:00
|
|
|
each data in ["2.x", "neural"]
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num")=data
|
|
|
|
+cell("num") #[strong 91.9]
|
|
|
|
+cell("num") #[strong 85.9]
|
|
|
|
+cell("num") #[strong 97.2]
|
|
|
|
+cell("num") 10.0k
|
|
|
|
+cell("num") 812MB
|
2017-10-03 12:26:20 +00:00
|
|
|
|
|
|
|
+row("divider")
|
|
|
|
+cell #[code en_core_web_sm] 1.2.0
|
|
|
|
each data in ["1.x", "linear", 86.6, 78.5, 96.6]
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num")=data
|
|
|
|
+cell("num") #[strong 25.7k]
|
|
|
|
+cell("num") 50MB
|
2017-10-03 12:26:20 +00:00
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code en_core_web_md] 1.2.1
|
2017-11-06 18:36:02 +00:00
|
|
|
each data in ["1.x", "linear", 90.6, 81.4, 96.7, "18.8k", "1GB"]
|
|
|
|
+cell("num")=data
|
2017-10-06 19:39:06 +00:00
|
|
|
|
|
|
|
+h(4, "benchmarks-models-spanish") Spanish
|
|
|
|
|
2017-11-06 17:19:00 +00:00
|
|
|
+aside("Evaluation note")
|
|
|
|
| The NER accuracy refers to the "silver standard" annotations in the
|
|
|
|
| WikiNER corpus. Accuracy on these annotations tends to be higher than
|
|
|
|
| correct human annotations.
|
|
|
|
|
2017-10-06 19:39:06 +00:00
|
|
|
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
|
|
|
|
+row
|
2017-11-06 17:19:00 +00:00
|
|
|
+cell #[+a("/models/es#es_core_news_sm") #[code es_core_news_sm]] 2.0.0a0
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num") 2.x
|
|
|
|
+cell("num") neural
|
|
|
|
+cell("num") 89.8
|
|
|
|
+cell("num") 88.7
|
|
|
|
+cell("num") #[strong 96.9]
|
|
|
|
+cell("num") #[em n/a]
|
|
|
|
+cell("num") #[strong 35MB]
|
2017-11-06 17:19:00 +00:00
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[+a("/models/es#es_core_news_md") #[code es_core_news_md]] 2.0.0a0
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num") 2.x
|
|
|
|
+cell("num") neural
|
|
|
|
+cell("num") #[strong 90.2]
|
|
|
|
+cell("num") 89.0
|
|
|
|
+cell("num") 97.8
|
|
|
|
+cell("num") #[em n/a]
|
|
|
|
+cell("num") 93MB
|
2017-10-06 19:39:06 +00:00
|
|
|
|
|
|
|
+row("divider")
|
|
|
|
+cell #[code es_core_web_md] 1.1.0
|
|
|
|
each data in ["1.x", "linear", 87.5]
|
2017-11-06 18:36:02 +00:00
|
|
|
+cell("num")=data
|
|
|
|
+cell("num") #[strong 94.2]
|
|
|
|
+cell("num") 96.7
|
|
|
|
+cell("num") #[em n/a]
|
|
|
|
+cell("num") 377MB
|