mirror of https://github.com/explosion/spaCy.git
Update benchmarks and models
This commit is contained in:
parent
acb9bdb852
commit
64d0f97c67
|
@ -452,8 +452,8 @@ mixin head-cell()
|
|||
|
||||
//- Table cell (only used within +row in +table)
|
||||
|
||||
mixin cell()
|
||||
td.c-table__cell.u-text&attributes(attributes)
|
||||
mixin cell(align)
|
||||
td.c-table__cell.u-text(class=align ? "u-text-" + align : null)&attributes(attributes)
|
||||
block
|
||||
|
||||
|
||||
|
|
|
@ -71,7 +71,7 @@ for id in CURRENT_MODELS
|
|||
+label=label
|
||||
if MODEL_META[field]
|
||||
| #[+help(MODEL_META[field]).u-color-subtle]
|
||||
+cell.u-text-right(data-tpl=id data-tpl-key=field)
|
||||
+cell("right")(data-tpl=id data-tpl-key=field)
|
||||
| n/a
|
||||
|
||||
p.u-text-small.u-color-dark(data-tpl=id data-tpl-key="notes")
|
||||
|
|
|
@ -43,7 +43,7 @@
|
|||
"en": ["en_core_web_sm", "en_core_web_lg", "en_vectors_web_lg"],
|
||||
"de": ["de_core_news_sm"],
|
||||
"es": ["es_core_news_sm", "es_core_news_md"],
|
||||
"pt": [],
|
||||
"pt": ["pt_core_news_sm"],
|
||||
"fr": ["fr_core_news_sm"],
|
||||
"it": ["it_core_news_sm"],
|
||||
"nl": ["nl_core_news_sm"],
|
||||
|
|
|
@ -5,41 +5,41 @@
|
|||
+cell #[strong spaCy v2.x]
|
||||
+cell 2017
|
||||
+cell Python / Cython
|
||||
+cell.u-text-right #[strong 92.6]
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell("right") #[strong 92.6]
|
||||
+cell("right") #[em n/a]
|
||||
| #[+help("This table shows speed as benchmarked by Choi et al. We therefore can't provide comparable figures, as we'd be running the benchmark on different hardware.").u-color-dark]
|
||||
|
||||
+row
|
||||
+cell #[strong spaCy v1.x]
|
||||
+cell 2015
|
||||
+cell Python / Cython
|
||||
+cell.u-text-right 91.8
|
||||
+cell.u-text-right 13,963
|
||||
+cell("right") 91.8
|
||||
+cell("right") 13,963
|
||||
|
||||
+row
|
||||
+cell ClearNLP
|
||||
+cell 2015
|
||||
+cell Java
|
||||
+cell.u-text-right 91.7
|
||||
+cell.u-text-right 10,271
|
||||
+cell("right") 91.7
|
||||
+cell("right") 10,271
|
||||
|
||||
+row
|
||||
+cell CoreNLP
|
||||
+cell 2015
|
||||
+cell Java
|
||||
+cell.u-text-right 89.6
|
||||
+cell.u-text-right 8,602
|
||||
+cell("right") 89.6
|
||||
+cell("right") 8,602
|
||||
|
||||
+row
|
||||
+cell MATE
|
||||
+cell 2015
|
||||
+cell Java
|
||||
+cell.u-text-right 92.5
|
||||
+cell.u-text-right 550
|
||||
+cell("right") 92.5
|
||||
+cell("right") 550
|
||||
|
||||
+row
|
||||
+cell Turbo
|
||||
+cell 2015
|
||||
+cell C++
|
||||
+cell.u-text-right 92.4
|
||||
+cell.u-text-right 349
|
||||
+cell("right") 92.4
|
||||
+cell("right") 349
|
||||
|
|
|
@ -4,7 +4,9 @@ p
|
|||
| In this section, we provide benchmark accuracies for the pre-trained
|
||||
| model pipelines we distribute with spaCy. Evaluations are conducted
|
||||
| end-to-end from raw text, with no "gold standard" pre-processing, over
|
||||
| text from a mix of genres where possible.
|
||||
| text from a mix of genres where possible. For are more detailed
|
||||
| comparison of the available models, see the new
|
||||
| #[+a("/models/comparison") model comparison tool].
|
||||
|
||||
+aside("Methodology")
|
||||
| The evaluation was conducted on raw text with no gold standard
|
||||
|
@ -16,55 +18,70 @@ p
|
|||
|
||||
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
|
||||
+row
|
||||
+cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0a5
|
||||
+cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0a8
|
||||
each data in ["2.x", "neural"]
|
||||
+cell.u-text-right=data
|
||||
+cell.u-text-right 91.4
|
||||
+cell.u-text-right 85.5
|
||||
+cell.u-text-right 97.0
|
||||
+cell.u-text-right 8.2k
|
||||
+cell.u-text-right #[strong 36 MB]
|
||||
+cell("right")=data
|
||||
+cell("right") 91.7
|
||||
+cell("right") 85.3
|
||||
+cell("right") 97.0
|
||||
+cell("right") 10.1k
|
||||
+cell("right") #[strong 35 MB]
|
||||
|
||||
+row
|
||||
+cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0a0
|
||||
+cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0a3
|
||||
each data in ["2.x", "neural"]
|
||||
+cell.u-text-right=data
|
||||
+cell.u-text-right #[strong 91.9]
|
||||
+cell.u-text-right #[strong 86.4]
|
||||
+cell.u-text-right #[strong 97.2]
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell.u-text-right 667 MB
|
||||
+cell("right")=data
|
||||
+cell("right") #[strong 91.9]
|
||||
+cell("right") #[strong 85.9]
|
||||
+cell("right") #[strong 97.2]
|
||||
+cell("right") 5.0k
|
||||
+cell("right") 812 MB
|
||||
|
||||
+row("divider")
|
||||
+cell #[code en_core_web_sm] 1.2.0
|
||||
each data in ["1.x", "linear", 86.6, 78.5, 96.6]
|
||||
+cell.u-text-right=data
|
||||
+cell.u-text-right #[strong 25.7k]
|
||||
+cell.u-text-right 50 MB
|
||||
+cell("right")=data
|
||||
+cell("right") #[strong 25.7k]
|
||||
+cell("right") 50 MB
|
||||
|
||||
+row
|
||||
+cell #[code en_core_web_md] 1.2.1
|
||||
each data in ["1.x", "linear", 90.6, 81.4, 96.7, "18.8k", "1 GB"]
|
||||
+cell.u-text-right=data
|
||||
+cell("right")=data
|
||||
|
||||
+h(4, "benchmarks-models-spanish") Spanish
|
||||
|
||||
+aside("Evaluation note")
|
||||
| The NER accuracy refers to the "silver standard" annotations in the
|
||||
| WikiNER corpus. Accuracy on these annotations tends to be higher than
|
||||
| correct human annotations.
|
||||
|
||||
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
|
||||
+row
|
||||
+cell #[+a("/models/es#es_core_web_sm") #[code es_core_web_sm]] 2.0.0a0
|
||||
+cell.u-text-right 2.x
|
||||
+cell.u-text-right neural
|
||||
+cell.u-text-right #[strong 90.1]
|
||||
+cell.u-text-right 89.0
|
||||
+cell.u-text-right #[strong 96.7]
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell.u-text-right #[strong 36 MB]
|
||||
+cell #[+a("/models/es#es_core_news_sm") #[code es_core_news_sm]] 2.0.0a0
|
||||
+cell("right") 2.x
|
||||
+cell("right") neural
|
||||
+cell("right") 89.8
|
||||
+cell("right") 88.7
|
||||
+cell("right") #[strong 96.9]
|
||||
+cell("right") #[em n/a]
|
||||
+cell("right") #[strong 35 MB]
|
||||
|
||||
+row
|
||||
+cell #[+a("/models/es#es_core_news_md") #[code es_core_news_md]] 2.0.0a0
|
||||
+cell("right") 2.x
|
||||
+cell("right") neural
|
||||
+cell("right") #[strong 90.2]
|
||||
+cell("right") 89.0
|
||||
+cell("right") 97.8
|
||||
+cell("right") #[em n/a]
|
||||
+cell("right") 93 MB
|
||||
|
||||
+row("divider")
|
||||
+cell #[code es_core_web_md] 1.1.0
|
||||
each data in ["1.x", "linear", 87.5]
|
||||
+cell.u-text-right=data
|
||||
+cell #[strong 94.2]
|
||||
+cell #[strong 96.7]
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell.u-text-right 377 MB
|
||||
+cell("right")=data
|
||||
+cell("right") #[strong 94.2]
|
||||
+cell("right") 96.7
|
||||
+cell("right") #[em n/a]
|
||||
+cell("right") 377 MB
|
||||
|
|
|
@ -50,55 +50,55 @@ p
|
|||
+cell spaCy v2.0.0
|
||||
+cell 2017
|
||||
+cell neural
|
||||
+cell.u-text-right 94.48
|
||||
+cell("right") 94.48
|
||||
|
||||
+row
|
||||
+cell spaCy v1.1.0
|
||||
+cell 2016
|
||||
+cell linear
|
||||
+cell.u-text-right 92.80
|
||||
+cell("right") 92.80
|
||||
|
||||
+row("divider")
|
||||
+cell
|
||||
+a("https://arxiv.org/pdf/1611.01734.pdf") Dozat and Manning
|
||||
+cell 2017
|
||||
+cell neural
|
||||
+cell.u-text-right #[strong 95.75]
|
||||
+cell("right") #[strong 95.75]
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("http://arxiv.org/abs/1603.06042") Andor et al.
|
||||
+cell 2016
|
||||
+cell neural
|
||||
+cell.u-text-right 94.44
|
||||
+cell("right") 94.44
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("https://github.com/tensorflow/models/tree/master/research/syntaxnet") SyntaxNet Parsey McParseface
|
||||
+cell 2016
|
||||
+cell neural
|
||||
+cell.u-text-right 94.15
|
||||
+cell("right") 94.15
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43800.pdf") Weiss et al.
|
||||
+cell 2015
|
||||
+cell neural
|
||||
+cell.u-text-right 93.91
|
||||
+cell("right") 93.91
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("http://research.google.com/pubs/archive/38148.pdf") Zhang and McDonald
|
||||
+cell 2014
|
||||
+cell linear
|
||||
+cell.u-text-right 93.32
|
||||
+cell("right") 93.32
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("http://www.cs.cmu.edu/~ark/TurboParser/") Martins et al.
|
||||
+cell 2013
|
||||
+cell linear
|
||||
+cell.u-text-right 93.10
|
||||
+cell("right") 93.10
|
||||
|
||||
+h(4, "ner-accuracy-ontonotes5") NER accuracy (OntoNotes 5, no pre-process)
|
||||
|
||||
|
@ -110,38 +110,38 @@ p
|
|||
|
||||
+table(["System", "Year", "Type", "Accuracy"])
|
||||
+row
|
||||
+cell spaCy #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] v2.0.0
|
||||
+cell spaCy #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] v2.0.0a3
|
||||
+cell 2017
|
||||
+cell neural
|
||||
+cell.u-text-right 86.45
|
||||
+cell("right") 85.85
|
||||
|
||||
+row("divider")
|
||||
+cell
|
||||
+a("https://arxiv.org/pdf/1702.02098.pdf") Strubell et al.
|
||||
+cell 2017
|
||||
+cell neural
|
||||
+cell.u-text-right #[strong 86.81]
|
||||
+cell("right") #[strong 86.81]
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("https://www.semanticscholar.org/paper/Named-Entity-Recognition-with-Bidirectional-LSTM-C-Chiu-Nichols/10a4db59e81d26b2e0e896d3186ef81b4458b93f") Chiu and Nichols
|
||||
+cell 2016
|
||||
+cell neural
|
||||
+cell.u-text-right 86.19
|
||||
+cell("right") 86.19
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("https://www.semanticscholar.org/paper/A-Joint-Model-for-Entity-Analysis-Coreference-Typi-Durrett-Klein/28eb033eee5f51c5e5389cbb6b777779203a6778") Durrett and Klein
|
||||
+cell 2014
|
||||
+cell neural
|
||||
+cell.u-text-right 84.04
|
||||
+cell("right") 84.04
|
||||
|
||||
+row
|
||||
+cell
|
||||
+a("http://www.aclweb.org/anthology/W09-1119") Ratinov and Roth
|
||||
+cell 2009
|
||||
+cell linear
|
||||
+cell.u-text-right 83.45
|
||||
+cell("right") 83.45
|
||||
|
||||
+h(3, "spacy-models") Model comparison
|
||||
|
||||
|
@ -183,24 +183,24 @@ p
|
|||
+row
|
||||
+cell #[strong spaCy]
|
||||
each data in [ "0.2ms", "1ms", "19ms"]
|
||||
+cell.u-text-right #[strong=data]
|
||||
+cell("right") #[strong=data]
|
||||
|
||||
each data in ["1x", "1x", "1x"]
|
||||
+cell.u-text-right=data
|
||||
+cell("right")=data
|
||||
|
||||
+row
|
||||
+cell CoreNLP
|
||||
each data in ["2ms", "10ms", "49ms", "10x", "10x", "2.6x"]
|
||||
+cell.u-text-right=data
|
||||
+cell("right")=data
|
||||
+row
|
||||
+cell ZPar
|
||||
each data in ["1ms", "8ms", "850ms", "5x", "8x", "44.7x"]
|
||||
+cell.u-text-right=data
|
||||
+cell("right")=data
|
||||
+row
|
||||
+cell NLTK
|
||||
each data in ["4ms", "443ms"]
|
||||
+cell.u-text-right=data
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell("right")=data
|
||||
+cell("right") #[em n/a]
|
||||
each data in ["20x", "443x"]
|
||||
+cell.u-text-right=data
|
||||
+cell.u-text-right #[em n/a]
|
||||
+cell("right")=data
|
||||
+cell("right") #[em n/a]
|
||||
|
|
Loading…
Reference in New Issue