spaCy/spacy/syntax/nn_parser.pyx

571 lines
24 KiB
Cython
Raw Normal View History

# cython: infer_types=True
# cython: cdivision=True
# cython: boundscheck=False
# coding: utf-8
from __future__ import unicode_literals, print_function
2017-10-27 17:45:57 +00:00
from collections import OrderedDict
import ujson
2017-09-26 11:44:56 +00:00
import json
import numpy
cimport cython.parallel
import cytoolz
import numpy.random
cimport numpy as np
2017-10-27 17:45:57 +00:00
from cpython.ref cimport PyObject, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno
2017-10-27 17:45:57 +00:00
from libc.math cimport exp
from libcpp.vector cimport vector
2017-11-14 23:51:42 +00:00
from libc.string cimport memset, memcpy
2017-10-27 17:45:57 +00:00
from libc.stdlib cimport calloc, free
from cymem.cymem cimport Pool
from thinc.typedefs cimport weight_t, class_t, hash_t
from thinc.extra.search cimport Beam
2017-10-27 17:45:57 +00:00
from thinc.api import chain, clone
from thinc.v2v import Model, Maxout, Affine
2017-10-03 18:07:17 +00:00
from thinc.misc import LayerNorm
2017-10-27 17:45:57 +00:00
from thinc.neural.ops import CupyOps
from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
from thinc cimport openblas
from ._parser_model cimport resize_activations, predict_states, arg_max_if_valid
from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
from ._parser_model cimport get_c_weights, get_c_sizes
from ._parser_model import ParserModel
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
from .._ml import link_vectors_to_models, create_default_optimizer
from ..compat import json_dumps, copy_array
from ..tokens.doc cimport Doc
from ..gold cimport GoldParse
from ..errors import Errors, TempErrors
2017-10-27 17:45:57 +00:00
from .. import util
from .stateclass cimport StateClass
from ._state cimport StateC
from .transition_system cimport Transition
from . cimport _beam_utils
from . import _beam_utils
from . import nonproj
2017-11-14 01:11:40 +00:00
cdef class Parser:
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
2017-10-06 18:17:31 +00:00
def Model(cls, nr_class, **cfg):
2017-10-11 07:43:48 +00:00
depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1))
if depth != 1:
raise ValueError(TempErrors.T004.format(value=depth))
2017-10-27 17:45:57 +00:00
parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
cfg.get('maxout_pieces', 2))
token_vector_width = util.env_opt('token_vector_width',
cfg.get('token_vector_width', 128))
2018-03-26 15:22:18 +00:00
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 128))
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 5000))
2018-03-28 15:35:07 +00:00
pretrained_vectors = cfg.get('pretrained_vectors', None)
tok2vec = Tok2Vec(token_vector_width, embed_size,
2018-03-28 15:35:07 +00:00
pretrained_vectors=pretrained_vectors)
tok2vec = chain(tok2vec, flatten)
2017-10-20 14:24:16 +00:00
lower = PrecomputableAffine(hidden_width,
nF=cls.nr_feature, nI=token_vector_width,
nP=parser_maxout_pieces)
2017-10-20 01:07:17 +00:00
lower.nP = parser_maxout_pieces
with Model.use_device('cpu'):
upper = zero_init(Affine(nr_class, hidden_width, drop_factor=0.0))
2017-05-29 08:14:20 +00:00
cfg = {
'nr_class': nr_class,
2017-10-06 18:50:52 +00:00
'hidden_depth': depth,
2017-05-29 08:14:20 +00:00
'token_vector_width': token_vector_width,
'hidden_width': hidden_width,
2017-10-06 00:38:13 +00:00
'maxout_pieces': parser_maxout_pieces,
2018-03-28 15:35:07 +00:00
'pretrained_vectors': pretrained_vectors,
2017-05-29 08:14:20 +00:00
}
return ParserModel(tok2vec, lower, upper), cfg
name = 'base_parser'
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
2017-10-27 12:39:30 +00:00
"""Create a Parser.
vocab (Vocab): The vocabulary object. Must be shared with documents
to be processed. The value is set to the `.vocab` attribute.
moves (TransitionSystem): Defines how the parse-state is created,
updated and evaluated. The value is set to the .moves attribute
unless True (default), in which case a new instance is created with
`Parser.Moves()`.
model (object): Defines how the parse-state is created, updated and
evaluated. The value is set to the .model attribute. If set to True
(default), a new instance will be created with `Parser.Model()`
in parser.begin_training(), parser.from_disk() or parser.from_bytes().
2017-10-27 12:39:30 +00:00
**cfg: Arbitrary configuration parameters. Set to the `.cfg` attribute
"""
self.vocab = vocab
if moves is True:
self.moves = self.TransitionSystem(self.vocab.strings)
else:
self.moves = moves
if 'beam_width' not in cfg:
cfg['beam_width'] = util.env_opt('beam_width', 1)
if 'beam_density' not in cfg:
cfg['beam_density'] = util.env_opt('beam_density', 0.0)
2017-09-22 14:38:22 +00:00
cfg.setdefault('cnn_maxout_pieces', 3)
self.cfg = cfg
self.model = model
self._multitasks = []
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
@property
def move_names(self):
names = []
for i in range(self.moves.n_moves):
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
names.append(name)
return names
nr_feature = 8
@property
def labels(self):
class_names = [self.moves.get_class_name(i) for i in range(self.moves.n_moves)]
return class_names
@property
def tok2vec(self):
'''Return the embedding and convolutional layer of the model.'''
return None if self.model in (None, True, False) else self.model.tok2vec
@property
def postprocesses(self):
# Available for subclasses, e.g. to deprojectivize
return []
def add_label(self, label):
resized = False
for action in self.moves.action_types:
added = self.moves.add_action(action, label)
if added:
resized = True
if self.model not in (True, False, None) and resized:
self.model.resize_output(self.moves.n_moves)
def add_multitask_objective(self, target):
# Defined in subclasses, to avoid circular import
raise NotImplementedError
def init_multitask_objectives(self, get_gold_tuples, pipeline, **cfg):
'''Setup models for secondary objectives, to benefit from multi-task
learning. This method is intended to be overridden by subclasses.
For instance, the dependency parser can benefit from sharing
an input representation with a label prediction model. These auxiliary
models are discarded after training.
'''
pass
def preprocess_gold(self, docs_golds):
for doc, gold in docs_golds:
yield doc, gold
def use_params(self, params):
# Can't decorate cdef class :(. Workaround.
with self.model.use_params(params):
yield
def __call__(self, Doc doc, beam_width=None):
2017-10-27 12:39:30 +00:00
"""Apply the parser or entity recognizer, setting the annotations onto
the `Doc` object.
2017-10-27 12:39:30 +00:00
doc (Doc): The document to be processed.
"""
if beam_width is None:
beam_width = self.cfg.get('beam_width', 1)
beam_density = self.cfg.get('beam_density', 0.)
states = self.predict([doc], beam_width=beam_width,
beam_density=beam_density)
self.set_annotations([doc], states, tensors=None)
return doc
def pipe(self, docs, int batch_size=256, int n_threads=2, beam_width=None):
2017-10-27 12:39:30 +00:00
"""Process a stream of documents.
stream: The sequence of documents to process.
batch_size (int): Number of documents to accumulate into a working set.
n_threads (int): The number of threads with which to work on the buffer
in parallel.
YIELDS (Doc): Documents, in order.
"""
if beam_width is None:
beam_width = self.cfg.get('beam_width', 1)
beam_density = self.cfg.get('beam_density', 0.)
cdef Doc doc
for batch in cytoolz.partition_all(batch_size, docs):
2017-11-14 01:11:40 +00:00
batch_in_order = list(batch)
by_length = sorted(batch_in_order, key=lambda doc: len(doc))
2017-10-18 22:25:21 +00:00
for subbatch in cytoolz.partition_all(8, by_length):
subbatch = list(subbatch)
parse_states = self.predict(subbatch, beam_width=beam_width,
beam_density=beam_density)
2017-11-14 01:11:40 +00:00
self.set_annotations(subbatch, parse_states, tensors=None)
for doc in batch_in_order:
yield doc
def predict(self, docs, beam_width=1, beam_density=0.0, drop=0.):
if isinstance(docs, Doc):
docs = [docs]
if beam_width < 2:
return self.greedy_parse(docs, drop=drop)
else:
return self.beam_parse(docs, beam_width=beam_width,
beam_density=beam_density, drop=drop)
def greedy_parse(self, docs, drop=0.):
cdef vector[StateC*] states
cdef StateClass state
model = self.model(docs)
batch = self.moves.init_batch(docs)
weights = get_c_weights(model)
for state in batch:
if not state.is_final():
states.push_back(state.c)
sizes = get_c_sizes(model, states.size())
2017-10-18 22:25:21 +00:00
with nogil:
self._parseC(&states[0],
weights, sizes)
return batch
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
cdef Beam beam
cdef Doc doc
2017-11-14 23:51:42 +00:00
cdef np.ndarray token_ids
model = self.model(docs)
beams = self.moves.init_beams(docs, beam_width, beam_density=beam_density)
2017-11-14 23:51:42 +00:00
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
dtype='i', order='C')
cdef int* c_ids
cdef int nr_feature = self.nr_feature
cdef int n_states
model = self.model(docs)
todo = [beam for beam in beams if not beam.is_done]
2017-11-14 23:51:42 +00:00
while todo:
token_ids.fill(-1)
c_ids = <int*>token_ids.data
n_states = 0
for beam in todo:
for i in range(beam.size):
2017-11-14 23:51:42 +00:00
state = <StateC*>beam.at(i)
# This way we avoid having to score finalized states
# We do have to take care to keep indexes aligned, though
2017-11-14 23:51:42 +00:00
if not state.is_final():
state.set_context_tokens(c_ids, nr_feature)
c_ids += nr_feature
n_states += 1
if n_states == 0:
break
vectors = model.state2vec(token_ids[:n_states])
scores = model.vec2scores(vectors)
todo = self.transition_beams(todo, scores)
return beams
cdef void _parseC(self, StateC** states,
WeightsC weights, SizesC sizes) nogil:
cdef int i, j
cdef vector[StateC*] unfinished
cdef ActivationsC activations
memset(&activations, 0, sizeof(activations))
while sizes.states >= 1:
predict_states(&activations,
states, &weights, sizes)
# Validate actions, argmax, take action.
self.c_transition_batch(states,
activations.scores, sizes.classes, sizes.states)
for i in range(sizes.states):
if not states[i].is_final():
unfinished.push_back(states[i])
for i in range(unfinished.size()):
states[i] = unfinished[i]
sizes.states = unfinished.size()
unfinished.clear()
def set_annotations(self, docs, states_or_beams, tensors=None):
cdef StateClass state
cdef Beam beam
cdef Doc doc
states = []
beams = []
for state_or_beam in states_or_beams:
if isinstance(state_or_beam, StateClass):
states.append(state_or_beam)
else:
beam = state_or_beam
state = StateClass.borrow(<StateC*>beam.at(0))
states.append(state)
beams.append(beam)
for i, (state, doc) in enumerate(zip(states, docs)):
self.moves.finalize_state(state.c)
for j in range(doc.length):
doc.c[j] = state.c._sent[j]
self.moves.finalize_doc(doc)
for hook in self.postprocesses:
for doc in docs:
hook(doc)
for beam in beams:
_beam_utils.cleanup_beam(beam)
def transition_states(self, states, float[:, ::1] scores):
cdef StateClass state
cdef float* c_scores = &scores[0, 0]
cdef vector[StateC*] c_states
for state in states:
c_states.push_back(state.c)
self.c_transition_batch(&c_states[0], c_scores, scores.shape[1], scores.shape[0])
return [state for state in states if not state.c.is_final()]
cdef void c_transition_batch(self, StateC** states, const float* scores,
int nr_class, int batch_size) nogil:
cdef int[500] is_valid # TODO: Unhack
cdef int i, guess
cdef Transition action
for i in range(batch_size):
self.moves.set_valid(is_valid, states[i])
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
action = self.moves.c[guess]
action.do(states[i], action.label)
states[i].push_hist(guess)
def transition_beams(self, beams, float[:, ::1] scores):
cdef Beam beam
cdef float* c_scores = &scores[0, 0]
for beam in beams:
for i in range(beam.size):
state = <StateC*>beam.at(i)
if not state.is_final():
self.moves.set_valid(beam.is_valid[i], state)
memcpy(beam.scores[i], c_scores, scores.shape[1] * sizeof(float))
c_scores += scores.shape[1]
beam.advance(_beam_utils.transition_state, NULL, <void*>self.moves.c)
beam.check_done(_beam_utils.check_final_state, NULL)
return [b for b in beams if not b.is_done]
def update(self, docs, golds, drop=0., sgd=None, losses=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
docs = [docs]
golds = [golds]
if len(docs) != len(golds):
raise ValueError(Errors.E077.format(value='update', n_docs=len(docs),
n_golds=len(golds)))
if losses is None:
losses = {}
losses.setdefault(self.name, 0.)
# The probability we use beam update, instead of falling back to
# a greedy update
beam_update_prob = self.cfg.get('beam_update_prob', 1.0)
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() < beam_update_prob:
return self.update_beam(docs, golds, self.cfg.get('beam_width', 1),
drop=drop, sgd=sgd, losses=losses,
beam_density=self.cfg.get('beam_density', 0.0))
# Chop sequences into lengths of this many transitions, to make the
# batch uniform length.
cut_gold = numpy.random.choice(range(20, 100))
states, golds, max_steps = self._init_gold_batch(docs, golds, max_length=cut_gold)
states_golds = [(s, g) for (s, g) in zip(states, golds)
if not s.is_final() and g is not None]
# Prepare the stepwise model, and get the callback for finishing the batch
model, finish_update = self.model.begin_update(docs, drop=drop)
for _ in range(max_steps):
if not states_golds:
break
states, golds = zip(*states_golds)
scores, backprop = model.begin_update(states, drop=drop)
d_scores = self.get_batch_loss(states, golds, scores, losses)
backprop(d_scores, sgd=sgd)
# Follow the predicted action
self.transition_states(states, scores)
states_golds = [eg for eg in states_golds if not eg[0].is_final()]
# Do the backprop
finish_update(golds, sgd=sgd)
return losses
def update_beam(self, docs, golds, width, drop=0., sgd=None, losses=None,
beam_density=0.0):
2017-08-12 22:15:16 +00:00
lengths = [len(d) for d in docs]
2017-08-13 23:02:05 +00:00
states = self.moves.init_batch(docs)
for gold in golds:
self.moves.preprocess_gold(gold)
model, finish_update = self.model.begin_update(docs, drop=drop)
states_d_scores, backprops, beams = _beam_utils.update_beam(
self.moves, self.nr_feature, 10000, states, golds, model.state2vec,
model.vec2scores, width, drop=drop, losses=losses,
beam_density=beam_density)
2017-08-12 19:47:45 +00:00
for i, d_scores in enumerate(states_d_scores):
losses[self.name] += (d_scores**2).sum()
2017-08-12 19:47:45 +00:00
ids, bp_vectors, bp_scores = backprops[i]
d_vector = bp_scores(d_scores, sgd=sgd)
if isinstance(model.ops, CupyOps) \
and not isinstance(ids, model.state2vec.ops.xp.ndarray):
model.backprops.append((
util.get_async(model.cuda_stream, ids),
util.get_async(model.cuda_stream, d_vector),
2017-08-12 22:15:16 +00:00
bp_vectors))
else:
model.backprops.append((ids, d_vector, bp_vectors))
model.make_updates(sgd)
cdef Beam beam
for beam in beams:
_beam_utils.cleanup_beam(beam)
def _init_gold_batch(self, whole_docs, whole_golds, min_length=5, max_length=500):
"""Make a square batch, of length equal to the shortest doc. A long
doc will get multiple states. Let's say we have a doc of length 2*N,
where N is the shortest doc. We'll make two states, one representing
long_doc[:N], and another representing long_doc[N:]."""
2017-05-26 16:31:23 +00:00
cdef:
StateClass state
Transition action
whole_states = self.moves.init_batch(whole_docs)
max_length = max(min_length, min(max_length, min([len(doc) for doc in whole_docs])))
2017-05-27 22:59:00 +00:00
max_moves = 0
states = []
2017-05-26 16:31:23 +00:00
golds = []
for doc, state, gold in zip(whole_docs, whole_states, whole_golds):
gold = self.moves.preprocess_gold(gold)
2017-05-26 16:31:23 +00:00
if gold is None:
continue
oracle_actions = self.moves.get_oracle_sequence(doc, gold)
start = 0
while start < len(doc):
2017-05-26 16:31:23 +00:00
state = state.copy()
2017-05-27 22:59:00 +00:00
n_moves = 0
while state.B(0) < start and not state.is_final():
2017-05-26 16:31:23 +00:00
action = self.moves.c[oracle_actions.pop(0)]
action.do(state.c, action.label)
state.c.push_hist(action.clas)
2017-05-27 22:59:00 +00:00
n_moves += 1
2017-05-26 16:31:23 +00:00
has_gold = self.moves.has_gold(gold, start=start,
end=start+max_length)
if not state.is_final() and has_gold:
states.append(state)
2017-05-26 16:31:23 +00:00
golds.append(gold)
2017-05-27 22:59:00 +00:00
max_moves = max(max_moves, n_moves)
2017-05-26 16:31:23 +00:00
start += min(max_length, len(doc)-start)
2017-05-27 22:59:00 +00:00
max_moves = max(max_moves, len(oracle_actions))
return states, golds, max_moves
def get_batch_loss(self, states, golds, float[:, ::1] scores, losses):
cdef StateClass state
cdef GoldParse gold
cdef Pool mem = Pool()
cdef int i
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
dtype='f', order='C')
c_d_scores = <float*>d_scores.data
for i, (state, gold) in enumerate(zip(states, golds)):
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
memset(costs, 0, self.moves.n_moves * sizeof(float))
self.moves.set_costs(is_valid, costs, state, gold)
cpu_log_loss(c_d_scores,
costs, is_valid, &scores[i, 0], d_scores.shape[1])
c_d_scores += d_scores.shape[1]
if losses is not None:
losses.setdefault(self.name, 0.)
losses[self.name] += (d_scores**2).sum()
return d_scores
def create_optimizer(self):
return create_default_optimizer(self.model.ops,
**self.cfg.get('optimizer', {}))
def begin_training(self, get_gold_tuples, pipeline=None, sgd=None, **cfg):
if 'model' in cfg:
self.model = cfg['model']
if not hasattr(get_gold_tuples, '__call__'):
gold_tuples = get_gold_tuples
get_gold_tuples = lambda: gold_tuples
Improve label management in parser and NER (#2108) This patch does a few smallish things that tighten up the training workflow a little, and allow memory use during training to be reduced by letting the GoldCorpus stream data properly. Previously, the parser and entity recognizer read and saved labels as lists, with extra labels noted separately. Lists were used becaue ordering is very important, to ensure that the label-to-class mapping is stable. We now manage labels as nested dictionaries, first keyed by the action, and then keyed by the label. Values are frequencies. The trick is, how do we save new labels? We need to make sure we iterate over these in the same order they're added. Otherwise, we'll get different class IDs, and the model's predictions won't make sense. To allow stable sorting, we map the new labels to negative values. If we have two new labels, they'll be noted as having "frequency" -1 and -2. The next new label will then have "frequency" -3. When we sort by (frequency, label), we then get a stable sort. Storing frequencies then allows us to make the next nice improvement. Previously we had to iterate over the whole training set, to pre-process it for the deprojectivisation. This led to storing the whole training set in memory. This was most of the required memory during training. To prevent this, we now store the frequencies as we stream in the data, and deprojectivize as we go. Once we've built the frequencies, we can then apply a frequency cut-off when we decide how many classes to make. Finally, to allow proper data streaming, we also have to have some way of shuffling the iterator. This is awkward if the training files have multiple documents in them. To solve this, the GoldCorpus class now writes the training data to disk in msgpack files, one per document. We can then shuffle the data by shuffling the paths. This is a squash merge, as I made a lot of very small commits. Individual commit messages below. * Simplify label management for TransitionSystem and its subclasses * Fix serialization for new label handling format in parser * Simplify and improve GoldCorpus class. Reduce memory use, write to temp dir * Set actions in transition system * Require thinc 6.11.1.dev4 * Fix error in parser init * Add unicode declaration * Fix unicode declaration * Update textcat test * Try to get model training on less memory * Print json loc for now * Try rapidjson to reduce memory use * Remove rapidjson requirement * Try rapidjson for reduced mem usage * Handle None heads when projectivising * Stream json docs * Fix train script * Handle projectivity in GoldParse * Fix projectivity handling * Add minibatch_by_words util from ud_train * Minibatch by number of words in spacy.cli.train * Move minibatch_by_words util to spacy.util * Fix label handling * More hacking at label management in parser * Fix encoding in msgpack serialization in GoldParse * Adjust batch sizes in parser training * Fix minibatch_by_words * Add merge_subtokens function to pipeline.pyx * Register merge_subtokens factory * Restore use of msgpack tmp directory * Use minibatch-by-words in train * Handle retokenization in scorer * Change back-off approach for missing labels. Use 'dep' label * Update NER for new label management * Set NER tags for over-segmented words * Fix label alignment in gold * Fix label back-off for infrequent labels * Fix int type in labels dict key * Fix int type in labels dict key * Update feature definition for 8 feature set * Update ud-train script for new label stuff * Fix json streamer * Print the line number if conll eval fails * Update children and sentence boundaries after deprojectivisation * Export set_children_from_heads from doc.pxd * Render parses during UD training * Remove print statement * Require thinc 6.11.1.dev6. Try adding wheel as install_requires * Set different dev version, to flush pip cache * Update thinc version * Update GoldCorpus docs * Remove print statements * Fix formatting and links [ci skip]
2018-03-19 01:58:08 +00:00
cfg.setdefault('min_action_freq', 30)
actions = self.moves.get_actions(gold_parses=get_gold_tuples(),
Improve label management in parser and NER (#2108) This patch does a few smallish things that tighten up the training workflow a little, and allow memory use during training to be reduced by letting the GoldCorpus stream data properly. Previously, the parser and entity recognizer read and saved labels as lists, with extra labels noted separately. Lists were used becaue ordering is very important, to ensure that the label-to-class mapping is stable. We now manage labels as nested dictionaries, first keyed by the action, and then keyed by the label. Values are frequencies. The trick is, how do we save new labels? We need to make sure we iterate over these in the same order they're added. Otherwise, we'll get different class IDs, and the model's predictions won't make sense. To allow stable sorting, we map the new labels to negative values. If we have two new labels, they'll be noted as having "frequency" -1 and -2. The next new label will then have "frequency" -3. When we sort by (frequency, label), we then get a stable sort. Storing frequencies then allows us to make the next nice improvement. Previously we had to iterate over the whole training set, to pre-process it for the deprojectivisation. This led to storing the whole training set in memory. This was most of the required memory during training. To prevent this, we now store the frequencies as we stream in the data, and deprojectivize as we go. Once we've built the frequencies, we can then apply a frequency cut-off when we decide how many classes to make. Finally, to allow proper data streaming, we also have to have some way of shuffling the iterator. This is awkward if the training files have multiple documents in them. To solve this, the GoldCorpus class now writes the training data to disk in msgpack files, one per document. We can then shuffle the data by shuffling the paths. This is a squash merge, as I made a lot of very small commits. Individual commit messages below. * Simplify label management for TransitionSystem and its subclasses * Fix serialization for new label handling format in parser * Simplify and improve GoldCorpus class. Reduce memory use, write to temp dir * Set actions in transition system * Require thinc 6.11.1.dev4 * Fix error in parser init * Add unicode declaration * Fix unicode declaration * Update textcat test * Try to get model training on less memory * Print json loc for now * Try rapidjson to reduce memory use * Remove rapidjson requirement * Try rapidjson for reduced mem usage * Handle None heads when projectivising * Stream json docs * Fix train script * Handle projectivity in GoldParse * Fix projectivity handling * Add minibatch_by_words util from ud_train * Minibatch by number of words in spacy.cli.train * Move minibatch_by_words util to spacy.util * Fix label handling * More hacking at label management in parser * Fix encoding in msgpack serialization in GoldParse * Adjust batch sizes in parser training * Fix minibatch_by_words * Add merge_subtokens function to pipeline.pyx * Register merge_subtokens factory * Restore use of msgpack tmp directory * Use minibatch-by-words in train * Handle retokenization in scorer * Change back-off approach for missing labels. Use 'dep' label * Update NER for new label management * Set NER tags for over-segmented words * Fix label alignment in gold * Fix label back-off for infrequent labels * Fix int type in labels dict key * Fix int type in labels dict key * Update feature definition for 8 feature set * Update ud-train script for new label stuff * Fix json streamer * Print the line number if conll eval fails * Update children and sentence boundaries after deprojectivisation * Export set_children_from_heads from doc.pxd * Render parses during UD training * Remove print statement * Require thinc 6.11.1.dev6. Try adding wheel as install_requires * Set different dev version, to flush pip cache * Update thinc version * Update GoldCorpus docs * Remove print statements * Fix formatting and links [ci skip]
2018-03-19 01:58:08 +00:00
min_freq=cfg.get('min_action_freq', 30))
self.moves.initialize_actions(actions)
cfg.setdefault('token_vector_width', 128)
if self.model is True:
2017-05-29 08:14:20 +00:00
self.model, cfg = self.Model(self.moves.n_moves, **cfg)
if sgd is None:
sgd = self.create_optimizer()
self.model.begin_training(
self.model.ops.allocate((5, cfg['token_vector_width'])))
if pipeline is not None:
self.init_multitask_objectives(get_gold_tuples, pipeline, sgd=sgd, **cfg)
2017-09-22 14:38:22 +00:00
link_vectors_to_models(self.vocab)
else:
if sgd is None:
sgd = self.create_optimizer()
self.model.begin_training(
self.model.ops.allocate((5, cfg['token_vector_width'])))
self.cfg.update(cfg)
return sgd
def to_disk(self, path, **exclude):
serializers = {
'model': lambda p: self.model.to_disk(p),
'vocab': lambda p: self.vocab.to_disk(p),
'moves': lambda p: self.moves.to_disk(p, strings=False),
2017-05-31 11:42:39 +00:00
'cfg': lambda p: p.open('w').write(json_dumps(self.cfg))
}
util.to_disk(path, serializers, exclude)
def from_disk(self, path, **exclude):
deserializers = {
'vocab': lambda p: self.vocab.from_disk(p),
'moves': lambda p: self.moves.from_disk(p, strings=False),
'cfg': lambda p: self.cfg.update(util.read_json(p)),
'model': lambda p: None
}
util.from_disk(path, deserializers, exclude)
if 'model' not in exclude:
path = util.ensure_path(path)
if self.model is True:
2017-05-29 11:38:20 +00:00
self.model, cfg = self.Model(**self.cfg)
2017-05-31 11:42:39 +00:00
else:
cfg = {}
with (path / 'model').open('rb') as file_:
2017-05-31 11:42:39 +00:00
bytes_data = file_.read()
self.model.from_bytes(bytes_data)
2017-05-29 11:38:20 +00:00
self.cfg.update(cfg)
return self
2017-05-29 08:14:20 +00:00
def to_bytes(self, **exclude):
2017-06-02 19:07:56 +00:00
serializers = OrderedDict((
('model', lambda: self.model.to_bytes()),
2017-06-02 19:07:56 +00:00
('vocab', lambda: self.vocab.to_bytes()),
('moves', lambda: self.moves.to_bytes(strings=False)),
2017-09-26 11:44:56 +00:00
('cfg', lambda: json.dumps(self.cfg, indent=2, sort_keys=True))
2017-06-02 19:07:56 +00:00
))
return util.to_bytes(serializers, exclude)
2017-05-29 08:14:20 +00:00
def from_bytes(self, bytes_data, **exclude):
2017-06-02 19:07:56 +00:00
deserializers = OrderedDict((
('vocab', lambda b: self.vocab.from_bytes(b)),
('moves', lambda b: self.moves.from_bytes(b, strings=False)),
2017-09-26 11:44:56 +00:00
('cfg', lambda b: self.cfg.update(json.loads(b))),
('model', lambda b: None)
2017-06-02 19:07:56 +00:00
))
msg = util.from_bytes(bytes_data, deserializers, exclude)
2017-05-29 08:14:20 +00:00
if 'model' not in exclude:
# TODO: Remove this once we don't have to handle previous models
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
2017-05-29 08:14:20 +00:00
if self.model is True:
2017-09-22 14:38:22 +00:00
self.model, cfg = self.Model(**self.cfg)
2017-05-29 13:40:45 +00:00
else:
cfg = {}
if 'model' in msg:
self.model.from_bytes(msg['model'])
2017-05-29 11:38:20 +00:00
self.cfg.update(cfg)
2017-05-29 08:14:20 +00:00
return self