spaCy/examples/training/train_textcat.py

187 lines
7.1 KiB
Python
Raw Normal View History

2017-10-26 22:32:19 +00:00
#!/usr/bin/env python
# coding: utf8
💫 Interactive code examples, spaCy Universe and various docs improvements (#2274) * Integrate Python kernel via Binder * Add live model test for languages with examples * Update docs and code examples * Adjust margin (if not bootstrapped) * Add binder version to global config * Update terminal and executable code mixins * Pass attributes through infobox and section * Hide v-cloak * Fix example * Take out model comparison for now * Add meta text for compat * Remove chart.js dependency * Tidy up and simplify JS and port big components over to Vue * Remove chartjs example * Add Twitter icon * Add purple stylesheet option * Add utility for hand cursor (special cases only) * Add transition classes * Add small option for section * Add thumb object for small round thumbnail images * Allow unset code block language via "none" value (workaround to still allow unset language to default to DEFAULT_SYNTAX) * Pass through attributes * Add syntax highlighting definitions for Julia, R and Docker * Add website icon * Remove user survey from navigation * Don't hide GitHub icon on small screens * Make top navigation scrollable on small screens * Remove old resources page and references to it * Add Universe * Add helper functions for better page URL and title * Update site description * Increment versions * Update preview images * Update mentions of resources * Fix image * Fix social images * Fix problem with cover sizing and floats * Add divider and move badges into heading * Add docstrings * Reference converting section * Add section on converting word vectors * Move converting section to custom section and fix formatting * Remove old fastText example * Move extensions content to own section Keep weird ID to not break permalinks for now (we don't want to rewrite URLs if not absolutely necessary) * Use better component example and add factories section * Add note on larger model * Use better example for non-vector * Remove similarity in context section Only works via small models with tensors so has always been kind of confusing * Add note on init-model command * Fix lightning tour examples and make excutable if possible * Add spacy train CLI section to train * Fix formatting and add video * Fix formatting * Fix textcat example description (resolves #2246) * Add dummy file to try resolve conflict * Delete dummy file * Tidy up [ci skip] * Ensure sufficient height of loading container * Add loading animation to universe * Update Thebelab build and use better startup message * Fix asset versioning * Fix typo [ci skip] * Add note on project idea label
2018-04-29 00:06:46 +00:00
"""Train a convolutional neural network text classifier on the
2017-10-26 22:32:19 +00:00
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
automatically via the package `ml_datasets`. The model is added to
2017-10-31 23:43:22 +00:00
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
see the documentation:
2017-11-07 11:00:43 +00:00
* Training: https://spacy.io/usage/training
2017-10-26 22:32:19 +00:00
Compatible with: spaCy v3.0.0+
2017-10-26 22:32:19 +00:00
"""
from __future__ import unicode_literals, print_function
Update spaCy for thinc 8.0.0 (#4920) * Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 16:06:46 +00:00
import plac
import random
2017-10-26 22:32:19 +00:00
from pathlib import Path
from ml_datasets import loaders
2017-10-26 22:32:19 +00:00
import spacy
from spacy import util
2017-11-06 23:22:43 +00:00
from spacy.util import minibatch, compounding
from spacy.gold import Example, GoldParse
2017-10-04 13:12:28 +00:00
2017-10-26 22:32:19 +00:00
@plac.annotations(
config_path=("Path to config file", "positional", None, Path),
2017-10-26 22:32:19 +00:00
output_dir=("Optional output directory", "option", "o", Path),
2017-11-01 16:09:22 +00:00
n_texts=("Number of texts to train from", "option", "t", int),
2018-12-02 03:26:26 +00:00
n_iter=("Number of training iterations", "option", "n", int),
2019-08-31 11:39:31 +00:00
init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
dataset=("Dataset to train on (default: imdb)", "option", "d", str),
threshold=("Min. number of instances for a given label (default 20)", "option", "m", int)
2018-12-02 03:26:26 +00:00
)
def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20):
if not config_path or not config_path.exists():
raise ValueError(f"Config file not found at {config_path}")
spacy.util.fix_random_seed()
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
print(f"Loading nlp model from {config_path}")
nlp_config = util.load_config(config_path, create_objects=False)["nlp"]
nlp = util.load_model_from_config(nlp_config)
2017-10-26 22:32:19 +00:00
# ensure the nlp object was defined with a textcat component
2018-12-02 03:26:26 +00:00
if "textcat" not in nlp.pipe_names:
raise ValueError(f"The nlp definition in the config does not contain a textcat component")
2017-10-26 22:32:19 +00:00
textcat = nlp.get_pipe("textcat")
2017-10-26 22:32:19 +00:00
# load the dataset
print(f"Loading dataset {dataset} ...")
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts)
2018-12-02 03:26:26 +00:00
print(
"Using {} examples ({} training, {} evaluation)".format(
n_texts, len(train_texts), len(dev_texts)
)
)
train_examples = []
for text, cats in zip(train_texts, train_cats):
doc = nlp.make_doc(text)
gold = GoldParse(doc, cats=cats)
for cat in cats:
textcat.add_label(cat)
ex = Example.from_gold(gold, doc=doc)
train_examples.append(ex)
2017-10-26 22:32:19 +00:00
# get names of other pipes to disable them during training
pipe_exceptions = ["textcat", "trf_wordpiecer", "trf_tok2vec"]
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
2017-10-26 22:32:19 +00:00
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
if init_tok2vec is not None:
with init_tok2vec.open("rb") as file_:
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 17:42:27 +00:00
textcat.model.get_ref("tok2vec").from_bytes(file_.read())
2017-10-26 22:32:19 +00:00
print("Training the model...")
2018-12-02 03:26:26 +00:00
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
batch_sizes = compounding(4.0, 32.0, 1.001)
2017-10-26 22:32:19 +00:00
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
random.shuffle(train_examples)
batches = minibatch(train_examples, size=batch_sizes)
2017-10-26 22:32:19 +00:00
for batch in batches:
nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
2017-10-26 22:32:19 +00:00
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
2018-12-02 03:26:26 +00:00
print(
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
losses["textcat"],
scores["textcat_p"],
scores["textcat_r"],
scores["textcat_f"],
)
)
2017-10-26 22:32:19 +00:00
# test the trained model (only makes sense for sentiment analysis)
2017-10-26 22:32:19 +00:00
test_text = "This movie sucked"
doc = nlp(test_text)
print(test_text, doc.cats)
if output_dir is not None:
with nlp.use_params(optimizer.averages):
nlp.to_disk(output_dir)
2017-10-26 22:32:19 +00:00
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
def load_data(dataset, threshold, limit=0, split=0.8):
"""Load data from the provided dataset."""
2017-10-26 22:32:19 +00:00
# Partition off part of the train data for evaluation
data_loader = loaders.get(dataset)
train_data, _ = data_loader(limit=int(limit/split))
2017-10-26 22:32:19 +00:00
random.shuffle(train_data)
texts, labels = zip(*train_data)
unique_labels = sorted(set([l for label_set in labels for l in label_set]))
print(f"# of unique_labels: {len(unique_labels)}")
count_values_train = dict()
for text, annot_list in train_data:
for annot in annot_list:
count_values_train[annot] = count_values_train.get(annot, 0) + 1
for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
if count < threshold:
unique_labels.remove(value)
print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}")
if unique_labels == {0, 1}:
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
else:
cats = []
for y in labels:
if isinstance(y, str):
cats.append({str(label): (label == y) for label in unique_labels})
elif isinstance(y, set):
cats.append({str(label): (label in y) for label in unique_labels})
else:
raise ValueError(f"Unrecognised type of labels: {type(y)}")
2017-10-26 22:32:19 +00:00
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def evaluate(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 0.0 # True positives
2017-10-26 22:32:19 +00:00
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 0.0 # True negatives
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if label == "NEGATIVE":
continue
if score >= 0.5 and gold[label] >= 0.5:
2018-12-02 03:26:26 +00:00
tp += 1.0
elif score >= 0.5 and gold[label] < 0.5:
2018-12-02 03:26:26 +00:00
fp += 1.0
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
2017-10-26 22:32:19 +00:00
precision = tp / (tp + fp)
recall = tp / (tp + fn)
2019-03-16 13:15:49 +00:00
if (precision + recall) == 0:
2019-02-23 11:45:41 +00:00
f_score = 0.0
else:
f_score = 2 * (precision * recall) / (precision + recall)
2018-12-02 03:26:26 +00:00
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
2017-07-22 22:34:12 +00:00
2018-12-02 03:26:26 +00:00
if __name__ == "__main__":
plac.call(main)