spaCy/spacy/serialize.pyx

204 lines
6.0 KiB
Cython
Raw Normal View History

2015-07-11 13:23:35 +00:00
from libcpp.vector cimport vector
from libc.stdint cimport uint32_t
from libc.stdint cimport int64_t
from libc.stdint cimport int32_t
2015-07-11 13:23:35 +00:00
from libc.stdint cimport uint64_t
from preshed.maps cimport PreshMap
from murmurhash.mrmr cimport hash64
2015-07-11 13:23:35 +00:00
import numpy
2015-07-11 23:31:37 +00:00
cimport cython
2015-07-12 21:48:46 +00:00
# Format
# - Total number of bytes in message (32 bit int)
# - Words, terminating in an EOL symbol, huffman coded ~12 bits per word
# - Spaces ~1 bit per word
# - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag
# combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab
2015-07-11 13:23:35 +00:00
cdef struct Node:
float prob
int32_t left
int32_t right
cdef struct Code:
uint64_t bits
char length
2015-07-11 13:23:35 +00:00
# Note that we're setting the most significant bits here first, when in practice
# we're actually wanting the last bit to be most significant (for Huffman coding,
# anyway).
cdef Code bit_append(Code code, bint bit) nogil:
cdef uint64_t one = 1
if bit:
code.bits |= one << code.length
else:
code.bits &= ~(one << code.length)
code.length += 1
return code
cdef class HuffmanCodec:
cdef vector[Node] nodes
cdef vector[Code] codes
2015-07-12 21:48:46 +00:00
cdef readonly float[:] probs
cdef PreshMap table
2015-07-12 21:48:46 +00:00
cdef uint32_t eol
def __init__(self, probs, eol):
self.eol = eol
self.probs = probs
self.codes.resize(len(probs))
for i in range(len(self.codes)):
self.codes[i].bits = 0
self.codes[i].length = 0
populate_nodes(self.nodes, probs)
cdef Code path
path.bits = 0
path.length = 0
2015-07-12 03:27:47 +00:00
assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path)
2015-07-12 21:48:46 +00:00
def encode(self, uint32_t[:] sequence):
cdef Code code
cdef bytes output = b''
cdef unsigned char byte = 0
cdef uint64_t one = 1
cdef unsigned char i_of_byte = 0
cdef unsigned char i_of_code = 0
for index in sequence:
code = self.codes[index]
for i_of_code in range(code.length):
if code.bits & (one << i_of_code):
byte |= one << i_of_byte
else:
byte &= ~(one << i_of_byte)
i_of_byte += 1
if i_of_byte == 8:
output += chr(byte)
byte = 0
i_of_byte = 0
if i_of_byte != 0:
output += chr(byte)
return output
def decode(self, bytes data):
node = self.nodes.back()
2015-07-12 21:48:46 +00:00
symbols = []
2015-07-12 17:58:05 +00:00
cdef unsigned char byte
2015-07-12 21:48:46 +00:00
cdef unsigned char i = 0
cdef unsigned char one = 1
for byte in data:
for i in range(8):
branch = node.right if (byte & (one << i)) else node.left
if branch >= 0:
node = self.nodes.at(branch)
else:
symbol = -(branch + 1)
if symbol == self.eol:
return symbols
else:
symbols.append(symbol)
node = self.nodes.back()
return symbols
property strings:
2015-07-12 03:27:47 +00:00
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def __get__(self):
output = []
2015-07-12 03:27:47 +00:00
cdef int i, j
cdef bytes string
cdef Code code
2015-07-12 03:27:47 +00:00
for i in range(self.codes.size()):
code = self.codes[i]
string = b'{0:b}'.format(code.bits).rjust(code.length, '0')
string = string[::-1]
output.append(string)
return output
2015-07-11 23:31:37 +00:00
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1:
2015-07-11 13:23:35 +00:00
assert len(probs) >= 3
cdef int size = len(probs)
cdef int i = size - 1
cdef int j = 0
2015-07-11 23:31:37 +00:00
while i >= 0 or (j+1) < nodes.size():
2015-07-11 13:23:35 +00:00
if i < 0:
_cover_two_nodes(nodes, j)
2015-07-11 13:23:35 +00:00
j += 2
2015-07-11 23:31:37 +00:00
elif j >= nodes.size():
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
2015-07-11 18:01:10 +00:00
i -= 2
2015-07-11 23:31:37 +00:00
elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob):
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
2015-07-11 13:23:35 +00:00
i -= 2
2015-07-11 23:31:37 +00:00
elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]:
_cover_two_nodes(nodes, j)
2015-07-11 13:23:35 +00:00
j += 2
else:
_cover_one_word_one_node(nodes, j, i, probs[i])
2015-07-11 13:23:35 +00:00
i -= 1
j += 1
return 0
2015-07-11 08:57:30 +00:00
cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil:
2015-07-11 13:23:35 +00:00
cdef Node node
node.left = j
node.right = j+1
node.prob = nodes[j].prob + nodes[j+1].prob
nodes.push_back(node)
2015-07-11 08:57:30 +00:00
cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil:
2015-07-11 13:23:35 +00:00
cdef Node node
2015-07-11 08:57:30 +00:00
# Encode leaves as negative integers, where the integer is the index of the
# word in the vocabulary.
2015-07-11 23:31:37 +00:00
cdef int64_t leaf_id = - <int64_t>(id_ + 1)
cdef float new_prob = prob + nodes[j].prob
2015-07-11 08:57:30 +00:00
if prob < nodes[j].prob:
2015-07-11 23:31:37 +00:00
node.left = leaf_id
node.right = j
node.prob = new_prob
2015-07-11 08:57:30 +00:00
else:
2015-07-11 23:31:37 +00:00
node.left = j
node.right = leaf_id
node.prob = new_prob
2015-07-11 20:27:43 +00:00
nodes.push_back(node)
2015-07-11 08:57:30 +00:00
cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil:
2015-07-11 23:31:37 +00:00
cdef Node node
node.left = -(id1+1)
node.right = -(id2+1)
node.prob = prob
2015-07-11 13:23:35 +00:00
nodes.push_back(node)
cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, Code path) except -1:
cdef Code left_path = bit_append(path, 0)
cdef Code right_path = bit_append(path, 1)
# Assign down left branch
if nodes[i].left >= 0:
assign_codes(nodes, codes, nodes[i].left, left_path)
else:
# Leaf on left
id_ = -(nodes[i].left + 1)
2015-07-12 03:27:47 +00:00
codes[id_] = left_path
# Assign down right branch
if nodes[i].right >= 0:
assign_codes(nodes, codes, nodes[i].right, right_path)
else:
# Leaf on right
id_ = -(nodes[i].right + 1)
2015-07-12 03:27:47 +00:00
codes[id_] = right_path