spaCy/spacy/serialize.pyx

160 lines
4.5 KiB
Cython
Raw Normal View History

2015-07-11 13:23:35 +00:00
from libcpp.vector cimport vector
from libc.stdint cimport uint32_t
from libc.stdint cimport int64_t
from libc.stdint cimport uint64_t
import numpy
2015-07-11 23:31:37 +00:00
cimport cython
2015-07-11 13:23:35 +00:00
#cdef class Serializer:
# def __init__(self, Vocab vocab):
# pass
#
# def dump(self, Doc tokens, file_):
# pass
# # Format
# # - Total number of bytes in message (32 bit int)
# # - Words, terminating in an EOL symbol, huffman coded ~12 bits per word
# # - Spaces ~1 bit per word
# # - Parse: Huffman coded head offset / dep label / POS tag / entity IOB tag
# # combo. ? bits per word. 40 * 80 * 40 * 12 = 1.5m symbol vocab
2015-07-11 13:23:35 +00:00
cdef struct Node:
float prob
int left
int right
2015-07-11 23:31:37 +00:00
cdef struct Code:
uint64_t bits
int length
cdef class HuffmanCodec:
cdef vector[Node] nodes
cdef vector[Code] codes
cdef float[:] probs
cdef dict table
def __init__(self, symbols, probs):
self.table = {}
for i, symbol in enumerate(symbols):
self.table[symbol] = i
self.probs = probs
self.codes.resize(len(probs))
populate_nodes(self.nodes, probs)
assign_codes(self.nodes, self.codes, len(self.nodes) - 1, b'')
def encode(self, sequence):
bits = []
for symbol in sequence:
i = self.table[symbol]
code = self.codes[i]
bits.extend(code)
return bits
def decode(self, bits):
symbols = []
node = self.nodes.back()
for bit in bits:
branch = node.right if bit else node.left
if branch >= 0:
node = self.nodes.at(branch)
else:
symbols.append(-(branch + 1))
node = self.nodes.back()
return symbols
property strings:
def __get__(self):
output = []
for i in range(len(self.codes)):
string = '{0:b}'.format(self.codes[i].bits).rjust(self.codes[i].length, '0')
output.append(string)
return output
2015-07-11 23:31:37 +00:00
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1:
2015-07-11 13:23:35 +00:00
assert len(probs) >= 3
cdef int size = len(probs)
cdef int i = size - 1
cdef int j = 0
2015-07-11 23:31:37 +00:00
while i >= 0 or (j+1) < nodes.size():
2015-07-11 13:23:35 +00:00
if i < 0:
_cover_two_nodes(nodes, j)
2015-07-11 13:23:35 +00:00
j += 2
2015-07-11 23:31:37 +00:00
elif j >= nodes.size():
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
2015-07-11 18:01:10 +00:00
i -= 2
2015-07-11 23:31:37 +00:00
elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob):
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
2015-07-11 13:23:35 +00:00
i -= 2
2015-07-11 23:31:37 +00:00
elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]:
_cover_two_nodes(nodes, j)
2015-07-11 13:23:35 +00:00
j += 2
else:
_cover_one_word_one_node(nodes, j, i, probs[i])
2015-07-11 13:23:35 +00:00
i -= 1
j += 1
return 0
2015-07-11 08:57:30 +00:00
cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil:
2015-07-11 13:23:35 +00:00
cdef Node node
node.left = j
node.right = j+1
node.prob = nodes[j].prob + nodes[j+1].prob
nodes.push_back(node)
2015-07-11 08:57:30 +00:00
cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil:
2015-07-11 13:23:35 +00:00
cdef Node node
2015-07-11 08:57:30 +00:00
# Encode leaves as negative integers, where the integer is the index of the
# word in the vocabulary.
2015-07-11 23:31:37 +00:00
cdef int64_t leaf_id = - <int64_t>(id_ + 1)
cdef float new_prob = prob + nodes[j].prob
2015-07-11 08:57:30 +00:00
if prob < nodes[j].prob:
2015-07-11 23:31:37 +00:00
node.left = leaf_id
node.right = j
node.prob = new_prob
2015-07-11 08:57:30 +00:00
else:
2015-07-11 23:31:37 +00:00
node.left = j
node.right = leaf_id
node.prob = new_prob
2015-07-11 20:27:43 +00:00
nodes.push_back(node)
2015-07-11 08:57:30 +00:00
cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil:
2015-07-11 23:31:37 +00:00
cdef Node node
node.left = -(id1+1)
node.right = -(id2+1)
node.prob = prob
2015-07-11 13:23:35 +00:00
nodes.push_back(node)
cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, bytes path) except -1:
left_path = path + b'0'
right_path = path + b'1'
# Assign down left branch
if nodes[i].left >= 0:
assign_codes(nodes, codes, nodes[i].left, left_path)
else:
# Leaf on left
id_ = -(nodes[i].left + 1)
codes[id_].length = len(left_path)
codes[id_].bits = <uint64_t>int(left_path, 2)
# Assign down right branch
if nodes[i].right >= 0:
assign_codes(nodes, codes, nodes[i].right, right_path)
else:
# Leaf on right
id_ = -(nodes[i].right + 1)
codes[id_].length = len(right_path)
codes[id_].bits = <uint64_t>int(right_path, 2)