2020-03-29 17:40:36 +00:00
|
|
|
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic, ParametricAttention
|
|
|
|
from thinc.api import chain, concatenate, clone, Dropout
|
|
|
|
from thinc.api import SparseLinear, Softmax, softmax_activation, Maxout, reduce_sum, Relu, residual, expand_window
|
|
|
|
from thinc.api import HashEmbed, with_ragged, with_array, with_cpu, uniqued, FeatureExtractor
|
2020-02-27 17:42:27 +00:00
|
|
|
|
2020-03-29 17:40:36 +00:00
|
|
|
from ..spacy_vectors import SpacyVectors
|
|
|
|
from ... import util
|
|
|
|
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE, LOWER
|
2020-02-28 10:57:41 +00:00
|
|
|
from ...util import registry
|
|
|
|
from ..extract_ngrams import extract_ngrams
|
2020-02-27 17:42:27 +00:00
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatCNN.v1")
|
|
|
|
def build_simple_cnn_text_classifier(tok2vec, exclusive_classes, nO=None):
|
|
|
|
"""
|
|
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
|
|
"""
|
|
|
|
with Model.define_operators({">>": chain}):
|
|
|
|
if exclusive_classes:
|
|
|
|
output_layer = Softmax(nO=nO, nI=tok2vec.get_dim("nO"))
|
|
|
|
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
|
|
|
|
model.set_ref("output_layer", output_layer)
|
|
|
|
else:
|
|
|
|
linear_layer = Linear(nO=nO, nI=tok2vec.get_dim("nO"))
|
2020-02-28 10:57:41 +00:00
|
|
|
model = (
|
|
|
|
tok2vec >> list2ragged() >> reduce_mean() >> linear_layer >> Logistic()
|
|
|
|
)
|
2020-02-27 17:42:27 +00:00
|
|
|
model.set_ref("output_layer", linear_layer)
|
|
|
|
model.set_ref("tok2vec", tok2vec)
|
|
|
|
model.set_dim("nO", nO)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatBOW.v1")
|
|
|
|
def build_bow_text_classifier(exclusive_classes, ngram_size, no_output_layer, nO=None):
|
|
|
|
with Model.define_operators({">>": chain}):
|
2020-03-29 17:40:36 +00:00
|
|
|
sparse_linear = SparseLinear(nO)
|
|
|
|
model = extract_ngrams(ngram_size, attr=ORTH) >> sparse_linear
|
|
|
|
model = with_cpu(model, model.ops)
|
2020-02-27 17:42:27 +00:00
|
|
|
if not no_output_layer:
|
2020-03-29 17:40:36 +00:00
|
|
|
output_layer = softmax_activation() if exclusive_classes else Logistic()
|
|
|
|
model = model >> with_cpu(output_layer, output_layer.ops)
|
|
|
|
model.set_ref("output_layer", sparse_linear)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCat.v1")
|
|
|
|
def build_text_classifier(width, embed_size, pretrained_vectors, exclusive_classes, ngram_size,
|
|
|
|
window_size, conv_depth, nO=None):
|
|
|
|
cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
|
|
lower = HashEmbed(nO=width, nV=embed_size, column=cols.index(LOWER))
|
|
|
|
prefix = HashEmbed(nO=width // 2, nV=embed_size, column=cols.index(PREFIX))
|
|
|
|
suffix = HashEmbed(nO=width // 2, nV=embed_size, column=cols.index(SUFFIX))
|
|
|
|
shape = HashEmbed(nO=width // 2, nV=embed_size, column=cols.index(SHAPE))
|
|
|
|
|
|
|
|
width_nI = sum(layer.get_dim("nO") for layer in [lower, prefix, suffix, shape])
|
|
|
|
trained_vectors = FeatureExtractor(cols) >> with_array(
|
|
|
|
uniqued(
|
|
|
|
(lower | prefix | suffix | shape)
|
|
|
|
>> Maxout(nO=width, nI=width_nI, normalize=True),
|
|
|
|
column=cols.index(ORTH),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
if pretrained_vectors:
|
|
|
|
nlp = util.load_model(pretrained_vectors)
|
|
|
|
vectors = nlp.vocab.vectors
|
|
|
|
vector_dim = vectors.data.shape[1]
|
|
|
|
|
|
|
|
static_vectors = SpacyVectors(vectors) >> with_array(
|
|
|
|
Linear(width, vector_dim)
|
|
|
|
)
|
|
|
|
vector_layer = trained_vectors | static_vectors
|
|
|
|
vectors_width = width * 2
|
|
|
|
else:
|
|
|
|
vector_layer = trained_vectors
|
|
|
|
vectors_width = width
|
|
|
|
tok2vec = vector_layer >> with_array(
|
|
|
|
Maxout(width, vectors_width, normalize=True)
|
|
|
|
>> residual((expand_window(window_size=window_size)
|
|
|
|
>> Maxout(nO=width, nI=width * ((window_size * 2) + 1), normalize=True))) ** conv_depth,
|
|
|
|
pad=conv_depth,
|
|
|
|
)
|
|
|
|
cnn_model = (
|
|
|
|
tok2vec
|
|
|
|
>> list2ragged()
|
|
|
|
>> ParametricAttention(width)
|
|
|
|
>> reduce_sum()
|
|
|
|
>> residual(Maxout(nO=width, nI=width))
|
|
|
|
>> Linear(nO=nO, nI=width)
|
|
|
|
>> Dropout(0.0)
|
|
|
|
)
|
|
|
|
|
|
|
|
linear_model = build_bow_text_classifier(
|
|
|
|
nO=nO, ngram_size=ngram_size, exclusive_classes=exclusive_classes, no_output_layer=False
|
|
|
|
)
|
|
|
|
nO_double = nO*2 if nO else None
|
|
|
|
if exclusive_classes:
|
|
|
|
output_layer = Softmax(nO=nO, nI=nO_double)
|
|
|
|
else:
|
|
|
|
output_layer = (
|
|
|
|
Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic()
|
|
|
|
)
|
|
|
|
model = (linear_model | cnn_model) >> output_layer
|
|
|
|
model.set_ref("tok2vec", tok2vec)
|
|
|
|
if model.has_dim("nO") is not False:
|
|
|
|
model.set_dim("nO", nO)
|
|
|
|
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.TextCatLowData.v1")
|
|
|
|
def build_text_classifier_lowdata(width, pretrained_vectors, nO=None):
|
|
|
|
nlp = util.load_model(pretrained_vectors)
|
|
|
|
vectors = nlp.vocab.vectors
|
|
|
|
vector_dim = vectors.data.shape[1]
|
|
|
|
|
|
|
|
# Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
|
|
|
|
with Model.define_operators({">>": chain, "**": clone}):
|
|
|
|
model = (
|
|
|
|
SpacyVectors(vectors)
|
|
|
|
>> list2ragged()
|
|
|
|
>> with_ragged(0, Linear(width, vector_dim))
|
|
|
|
>> ParametricAttention(width)
|
|
|
|
>> reduce_sum()
|
|
|
|
>> residual(Relu(width, width)) ** 2
|
|
|
|
>> Linear(nO, width)
|
|
|
|
>> Dropout(0.0)
|
|
|
|
>> Logistic()
|
|
|
|
)
|
2020-02-27 17:42:27 +00:00
|
|
|
return model
|