spaCy/spacy/ml/models/textcat.py

43 lines
1.9 KiB
Python
Raw Normal View History

Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 17:42:27 +00:00
from spacy.attrs import ORTH
from spacy.util import registry
from spacy.ml.extract_ngrams import extract_ngrams
from thinc.api import Model, chain, reduce_mean, Linear, list2ragged, Logistic, SparseLinear, Softmax
@registry.architectures.register("spacy.TextCatCNN.v1")
def build_simple_cnn_text_classifier(tok2vec, exclusive_classes, nO=None):
"""
Build a simple CNN text classifier, given a token-to-vector model as inputs.
If exclusive_classes=True, a softmax non-linearity is applied, so that the
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
is applied instead, so that outputs are in the range [0, 1].
"""
with Model.define_operators({">>": chain}):
if exclusive_classes:
output_layer = Softmax(nO=nO, nI=tok2vec.get_dim("nO"))
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
model.set_ref("output_layer", output_layer)
else:
# TODO: experiment with init_w=zero_init
linear_layer = Linear(nO=nO, nI=tok2vec.get_dim("nO"))
model = tok2vec >> list2ragged() >> reduce_mean() >> linear_layer >> Logistic()
model.set_ref("output_layer", linear_layer)
model.set_ref("tok2vec", tok2vec)
model.set_dim("nO", nO)
return model
@registry.architectures.register("spacy.TextCatBOW.v1")
def build_bow_text_classifier(exclusive_classes, ngram_size, no_output_layer, nO=None):
# Note: original defaults were ngram_size=1 and no_output_layer=False
with Model.define_operators({">>": chain}):
model = extract_ngrams(ngram_size, attr=ORTH) >> SparseLinear(nO)
model.to_cpu()
if not no_output_layer:
output_layer = Softmax(nO) if exclusive_classes else Logistic(nO)
output_layer.to_cpu()
model = model >> output_layer
model.set_ref("output_layer", output_layer)
return model