mirror of https://github.com/explosion/spaCy.git
357 lines
17 KiB
Markdown
357 lines
17 KiB
Markdown
|
---
|
||
|
title: SpanResolver
|
||
|
tag: class,experimental
|
||
|
source: spacy-experimental/coref/span_resolver_component.py
|
||
|
teaser: 'Pipeline component for resolving tokens into spans'
|
||
|
api_base_class: /api/pipe
|
||
|
api_string_name: span_resolver
|
||
|
api_trainable: true
|
||
|
---
|
||
|
|
||
|
> #### Installation
|
||
|
>
|
||
|
> ```bash
|
||
|
> $ pip install -U spacy-experimental
|
||
|
> ```
|
||
|
|
||
|
<Infobox title="Important note" variant="warning">
|
||
|
|
||
|
This component not yet integrated into spaCy core, and is available via the
|
||
|
extension package
|
||
|
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
|
||
|
in version 0.6.0. It exposes the component via
|
||
|
[entry points](/usage/saving-loading/#entry-points), so if you have the package
|
||
|
installed, using `factory = "experimental_span_resolver"` in your
|
||
|
[training config](/usage/training#config) or
|
||
|
`nlp.add_pipe("experimental_span_resolver")` will work out-of-the-box.
|
||
|
|
||
|
</Infobox>
|
||
|
|
||
|
A `SpanResolver` component takes in tokens (represented as `Span` objects of
|
||
|
length 1) and resolves them into `Span` objects of arbitrary length. The initial
|
||
|
use case is as a post-processing step on word-level
|
||
|
[coreference resolution](/api/coref). The input and output keys used to store
|
||
|
`Span` objects are configurable.
|
||
|
|
||
|
## Assigned Attributes {#assigned-attributes}
|
||
|
|
||
|
Predictions will be saved to `Doc.spans` as [`SpanGroup`s](/api/spangroup).
|
||
|
|
||
|
Input token spans will be read in using an input prefix, by default
|
||
|
`"coref_head_clusters"`, and output spans will be saved using an output prefix
|
||
|
(default `"coref_clusters"`) plus a serial number starting from one. The
|
||
|
prefixes are configurable.
|
||
|
|
||
|
| Location | Value |
|
||
|
| ------------------------------------------------- | ------------------------------------------------------------------------- |
|
||
|
| `Doc.spans[output_prefix + "_" + cluster_number]` | One group of predicted spans. Cluster number starts from 1. ~~SpanGroup~~ |
|
||
|
|
||
|
## Config and implementation {#config}
|
||
|
|
||
|
The default config is defined by the pipeline component factory and describes
|
||
|
how the component should be configured. You can override its settings via the
|
||
|
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||
|
[`config.cfg` for training](/usage/training#config). See the
|
||
|
[model architectures](/api/architectures#coref-architectures) documentation for
|
||
|
details on the architectures and their arguments and hyperparameters.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> from spacy_experimental.coref.span_resolver_component import DEFAULT_SPAN_RESOLVER_MODEL
|
||
|
> from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX, DEFAULT_CLUSTER_HEAD_PREFIX
|
||
|
> config={
|
||
|
> "model": DEFAULT_SPAN_RESOLVER_MODEL,
|
||
|
> "input_prefix": DEFAULT_CLUSTER_HEAD_PREFIX,
|
||
|
> "output_prefix": DEFAULT_CLUSTER_PREFIX,
|
||
|
> },
|
||
|
> nlp.add_pipe("experimental_span_resolver", config=config)
|
||
|
> ```
|
||
|
|
||
|
| Setting | Description |
|
||
|
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanResolver](/api/architectures#SpanResolver). ~~Model~~ |
|
||
|
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
|
||
|
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
|
||
|
|
||
|
## SpanResolver.\_\_init\_\_ {#init tag="method"}
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> # Construction via add_pipe with default model
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
>
|
||
|
> # Construction via add_pipe with custom model
|
||
|
> config = {"model": {"@architectures": "my_span_resolver.v1"}}
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver", config=config)
|
||
|
>
|
||
|
> # Construction from class
|
||
|
> from spacy_experimental.coref.span_resolver_component import SpanResolver
|
||
|
> span_resolver = SpanResolver(nlp.vocab, model)
|
||
|
> ```
|
||
|
|
||
|
Create a new pipeline instance. In your application, you would normally use a
|
||
|
shortcut for this and instantiate the component using its string name and
|
||
|
[`nlp.add_pipe`](/api/language#add_pipe).
|
||
|
|
||
|
| Name | Description |
|
||
|
| --------------- | --------------------------------------------------------------------------------------------------- |
|
||
|
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||
|
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
|
||
|
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
|
||
|
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
|
||
|
|
||
|
## SpanResolver.\_\_call\_\_ {#call tag="method"}
|
||
|
|
||
|
Apply the pipe to one document. The document is modified in place and returned.
|
||
|
This usually happens under the hood when the `nlp` object is called on a text
|
||
|
and all pipeline components are applied to the `Doc` in order. Both
|
||
|
[`__call__`](#call) and [`pipe`](#pipe) delegate to the [`predict`](#predict)
|
||
|
and [`set_annotations`](#set_annotations) methods.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> doc = nlp("This is a sentence.")
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> # This usually happens under the hood
|
||
|
> processed = span_resolver(doc)
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| ----------- | -------------------------------- |
|
||
|
| `doc` | The document to process. ~~Doc~~ |
|
||
|
| **RETURNS** | The processed document. ~~Doc~~ |
|
||
|
|
||
|
## SpanResolver.pipe {#pipe tag="method"}
|
||
|
|
||
|
Apply the pipe to a stream of documents. This usually happens under the hood
|
||
|
when the `nlp` object is called on a text and all pipeline components are
|
||
|
applied to the `Doc` in order. Both [`__call__`](/api/span-resolver#call) and
|
||
|
[`pipe`](/api/span-resolver#pipe) delegate to the
|
||
|
[`predict`](/api/span-resolver#predict) and
|
||
|
[`set_annotations`](/api/span-resolver#set_annotations) methods.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> for doc in span_resolver.pipe(docs, batch_size=50):
|
||
|
> pass
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ------------------------------------------------------------- |
|
||
|
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||
|
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||
|
|
||
|
## SpanResolver.initialize {#initialize tag="method"}
|
||
|
|
||
|
Initialize the component for training. `get_examples` should be a function that
|
||
|
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
||
|
should be supplied.** The data examples are used to **initialize the model** of
|
||
|
the component and can either be the full training data or a representative
|
||
|
sample. Initialization includes validating the network,
|
||
|
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||
|
setting up the label scheme based on the data. This method is typically called
|
||
|
by [`Language.initialize`](/api/language#initialize).
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> span_resolver.initialize(lambda: examples, nlp=nlp)
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||
|
|
||
|
## SpanResolver.predict {#predict tag="method"}
|
||
|
|
||
|
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||
|
modifying them. Predictions are returned as a list of `MentionClusters`, one for
|
||
|
each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
|
||
|
of `int`s, where each item corresponds to an input `SpanGroup`, and the `int`s
|
||
|
correspond to token indices.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> spans = span_resolver.predict([doc1, doc2])
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| ----------- | ------------------------------------------------------------- |
|
||
|
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||
|
| **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ |
|
||
|
|
||
|
## SpanResolver.set_annotations {#set_annotations tag="method"}
|
||
|
|
||
|
Modify a batch of documents, saving predictions using the output prefix in
|
||
|
`Doc.spans`.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> spans = span_resolver.predict([doc1, doc2])
|
||
|
> span_resolver.set_annotations([doc1, doc2], spans)
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| ------- | ------------------------------------------------------------- |
|
||
|
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||
|
| `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ |
|
||
|
|
||
|
## SpanResolver.update {#update tag="method"}
|
||
|
|
||
|
Learn from a batch of [`Example`](/api/example) objects. Delegates to
|
||
|
[`predict`](/api/span-resolver#predict).
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> optimizer = nlp.initialize()
|
||
|
> losses = span_resolver.update(examples, sgd=optimizer)
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `drop` | The dropout rate. ~~float~~ |
|
||
|
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||
|
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||
|
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||
|
|
||
|
## SpanResolver.create_optimizer {#create_optimizer tag="method"}
|
||
|
|
||
|
Create an optimizer for the pipeline component.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> optimizer = span_resolver.create_optimizer()
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| ----------- | ---------------------------- |
|
||
|
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||
|
|
||
|
## SpanResolver.use_params {#use_params tag="method, contextmanager"}
|
||
|
|
||
|
Modify the pipe's model, to use the given parameter values. At the end of the
|
||
|
context, the original parameters are restored.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> with span_resolver.use_params(optimizer.averages):
|
||
|
> span_resolver.to_disk("/best_model")
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------- | -------------------------------------------------- |
|
||
|
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||
|
|
||
|
## SpanResolver.to_disk {#to_disk tag="method"}
|
||
|
|
||
|
Serialize the pipe to disk.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> span_resolver.to_disk("/path/to/span_resolver")
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
|
||
|
## SpanResolver.from_disk {#from_disk tag="method"}
|
||
|
|
||
|
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> span_resolver.from_disk("/path/to/span_resolver")
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||
|
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
| **RETURNS** | The modified `SpanResolver` object. ~~SpanResolver~~ |
|
||
|
|
||
|
## SpanResolver.to_bytes {#to_bytes tag="method"}
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> span_resolver_bytes = span_resolver.to_bytes()
|
||
|
> ```
|
||
|
|
||
|
Serialize the pipe to a bytestring.
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
|
| _keyword-only_ | |
|
||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
| **RETURNS** | The serialized form of the `SpanResolver` object. ~~bytes~~ |
|
||
|
|
||
|
## SpanResolver.from_bytes {#from_bytes tag="method"}
|
||
|
|
||
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> span_resolver_bytes = span_resolver.to_bytes()
|
||
|
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||
|
> span_resolver.from_bytes(span_resolver_bytes)
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| -------------- | ------------------------------------------------------------------------------------------- |
|
||
|
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||
|
| _keyword-only_ | |
|
||
|
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||
|
| **RETURNS** | The `SpanResolver` object. ~~SpanResolver~~ |
|
||
|
|
||
|
## Serialization fields {#serialization-fields}
|
||
|
|
||
|
During serialization, spaCy will export several data fields used to restore
|
||
|
different aspects of the object. If needed, you can exclude them from
|
||
|
serialization by passing in the string names via the `exclude` argument.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> data = span_resolver.to_disk("/path", exclude=["vocab"])
|
||
|
> ```
|
||
|
|
||
|
| Name | Description |
|
||
|
| ------- | -------------------------------------------------------------- |
|
||
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||
|
| `cfg` | The config file. You usually don't want to exclude this. |
|
||
|
| `model` | The binary model data. You usually don't want to exclude this. |
|