mirror of https://github.com/explosion/spaCy.git
Add experimental coref docs (#11291)
* Add experimental coref docs * Docs cleanup * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Apply changes from code review * Fix prettier formatting It seems a period after a number made this think it was a list? * Update docs on examples for initialize * Add docs for coref scorers * Remove 3.4 notes from coref There won't be a "new" tag until it's in core. * Add docs for span cleaner * Fix docs * Fix docs to match spacy-experimental These weren't properly updated when the code was moved out of spacy core. * More doc fixes * Formatting * Update architectures * Fix links * Fix another link Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <svlandeg@github.com>
This commit is contained in:
parent
877671e09a
commit
a44b7d4622
|
@ -11,6 +11,7 @@ menu:
|
|||
- ['Text Classification', 'textcat']
|
||||
- ['Span Classification', 'spancat']
|
||||
- ['Entity Linking', 'entitylinker']
|
||||
- ['Coreference', 'coref-architectures']
|
||||
---
|
||||
|
||||
A **model architecture** is a function that wires up a
|
||||
|
@ -587,8 +588,8 @@ consists of either two or three subnetworks:
|
|||
run once for each batch.
|
||||
- **lower**: Construct a feature-specific vector for each `(token, feature)`
|
||||
pair. This is also run once for each batch. Constructing the state
|
||||
representation is then a matter of summing the component features and
|
||||
applying the non-linearity.
|
||||
representation is then a matter of summing the component features and applying
|
||||
the non-linearity.
|
||||
- **upper** (optional): A feed-forward network that predicts scores from the
|
||||
state representation. If not present, the output from the lower model is used
|
||||
as action scores directly.
|
||||
|
@ -628,8 +629,8 @@ same signature, but the `use_upper` argument was `True` by default.
|
|||
> ```
|
||||
|
||||
Build a tagger model, using a provided token-to-vector component. The tagger
|
||||
model adds a linear layer with softmax activation to predict scores given
|
||||
the token vectors.
|
||||
model adds a linear layer with softmax activation to predict scores given the
|
||||
token vectors.
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------------------------------------ |
|
||||
|
@ -920,5 +921,84 @@ A function that reads an existing `KnowledgeBase` from file.
|
|||
A function that takes as input a [`KnowledgeBase`](/api/kb) and a
|
||||
[`Span`](/api/span) object denoting a named entity, and returns a list of
|
||||
plausible [`Candidate`](/api/kb/#candidate) objects. The default
|
||||
`CandidateGenerator` uses the text of a mention to find its potential
|
||||
aliases in the `KnowledgeBase`. Note that this function is case-dependent.
|
||||
`CandidateGenerator` uses the text of a mention to find its potential aliases in
|
||||
the `KnowledgeBase`. Note that this function is case-dependent.
|
||||
|
||||
## Coreference {#coref-architectures tag="experimental"}
|
||||
|
||||
A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to
|
||||
the same entity. A [`SpanResolver`](/api/span-resolver) component infers spans
|
||||
from single tokens. Together these components can be used to reproduce
|
||||
traditional coreference models. You can also omit the `SpanResolver` if working
|
||||
with only token-level clusters is acceptable.
|
||||
|
||||
### spacy-experimental.Coref.v1 {#Coref tag="experimental"}
|
||||
|
||||
> #### Example Config
|
||||
>
|
||||
> ```ini
|
||||
>
|
||||
> [model]
|
||||
> @architectures = "spacy-experimental.Coref.v1"
|
||||
> distance_embedding_size = 20
|
||||
> dropout = 0.3
|
||||
> hidden_size = 1024
|
||||
> depth = 2
|
||||
> antecedent_limit = 50
|
||||
> antecedent_batch_size = 512
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> @architectures = "spacy-transformers.TransformerListener.v1"
|
||||
> grad_factor = 1.0
|
||||
> upstream = "transformer"
|
||||
> pooling = {"@layers":"reduce_mean.v1"}
|
||||
> ```
|
||||
|
||||
The `Coref` model architecture is a Thinc `Model`.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||
| `distance_embedding_size` | A representation of the distance between candidates. ~~int~~ |
|
||||
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
|
||||
| `hidden_size` | Size of the main internal layers. ~~int~~ |
|
||||
| `depth` | Depth of the internal network. ~~int~~ |
|
||||
| `antecedent_limit` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
|
||||
| `antecedent_batch_size` | Internal batch size. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||
|
||||
### spacy-experimental.SpanResolver.v1 {#SpanResolver tag="experimental"}
|
||||
|
||||
> #### Example Config
|
||||
>
|
||||
> ```ini
|
||||
>
|
||||
> [model]
|
||||
> @architectures = "spacy-experimental.SpanResolver.v1"
|
||||
> hidden_size = 1024
|
||||
> distance_embedding_size = 64
|
||||
> conv_channels = 4
|
||||
> window_size = 1
|
||||
> max_distance = 128
|
||||
> prefix = "coref_head_clusters"
|
||||
>
|
||||
> [model.tok2vec]
|
||||
> @architectures = "spacy-transformers.TransformerListener.v1"
|
||||
> grad_factor = 1.0
|
||||
> upstream = "transformer"
|
||||
> pooling = {"@layers":"reduce_mean.v1"}
|
||||
> ```
|
||||
|
||||
The `SpanResolver` model architecture is a Thinc `Model`. Note that
|
||||
`MentionClusters` is `List[List[Tuple[int, int]]]`.
|
||||
|
||||
| Name | Description |
|
||||
| ------------------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||
| `hidden_size` | Size of the main internal layers. ~~int~~ |
|
||||
| `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~ |
|
||||
| `conv_channels` | The number of channels in the internal CNN. ~~int~~ |
|
||||
| `window_size` | The number of neighboring tokens to consider in the internal CNN. `1` means consider one token on each side. ~~int~~ |
|
||||
| `max_distance` | The longest possible length of a predicted span. ~~int~~ |
|
||||
| `prefix` | The prefix that indicates spans to use for input data. ~~string~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[MentionClusters]]~~ |
|
||||
|
|
|
@ -0,0 +1,353 @@
|
|||
---
|
||||
title: CoreferenceResolver
|
||||
tag: class,experimental
|
||||
source: spacy-experimental/coref/coref_component.py
|
||||
teaser: 'Pipeline component for word-level coreference resolution'
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: coref
|
||||
api_trainable: true
|
||||
---
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
> ```bash
|
||||
> $ pip install -U spacy-experimental
|
||||
> ```
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component is not yet integrated into spaCy core, and is available via the
|
||||
extension package
|
||||
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
|
||||
in version 0.6.0. It exposes the component via
|
||||
[entry points](/usage/saving-loading/#entry-points), so if you have the package
|
||||
installed, using `factory = "experimental_coref"` in your
|
||||
[training config](/usage/training#config) or
|
||||
`nlp.add_pipe("experimental_coref")` will work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
A `CoreferenceResolver` component groups tokens into clusters that refer to the
|
||||
same thing. Clusters are represented as SpanGroups that start with a prefix
|
||||
(`coref_clusters` by default).
|
||||
|
||||
A `CoreferenceResolver` component can be paired with a
|
||||
[`SpanResolver`](/api/span-resolver) to expand single tokens to spans.
|
||||
|
||||
## Assigned Attributes {#assigned-attributes}
|
||||
|
||||
Predictions will be saved to `Doc.spans` as a [`SpanGroup`](/api/spangroup). The
|
||||
span key will be a prefix plus a serial number referring to the coreference
|
||||
cluster, starting from zero.
|
||||
|
||||
The span key prefix defaults to `"coref_clusters"`, but can be passed as a
|
||||
parameter.
|
||||
|
||||
| Location | Value |
|
||||
| ------------------------------------------ | ------------------------------------------------------------------------------------------------------- |
|
||||
| `Doc.spans[prefix + "_" + cluster_number]` | One coreference cluster, represented as single-token spans. Cluster numbers start from 1. ~~SpanGroup~~ |
|
||||
|
||||
## Config and implementation {#config}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures#coref-architectures) documentation for
|
||||
details on the architectures and their arguments and hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy_experimental.coref.coref_component import DEFAULT_COREF_MODEL
|
||||
> from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX
|
||||
> config={
|
||||
> "model": DEFAULT_COREF_MODEL,
|
||||
> "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
|
||||
> },
|
||||
> nlp.add_pipe("experimental_coref", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| --------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Coref](/api/architectures#Coref). ~~Model~~ |
|
||||
| `span_cluster_prefix` | The prefix for the keys for clusters saved to `doc.spans`. Defaults to `coref_clusters`. ~~str~~ |
|
||||
|
||||
## CoreferenceResolver.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
>
|
||||
> # Construction via add_pipe with custom model
|
||||
> config = {"model": {"@architectures": "my_coref.v1"}}
|
||||
> coref = nlp.add_pipe("experimental_coref", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_experimental.coref.coref_component import CoreferenceResolver
|
||||
> coref = CoreferenceResolver(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| --------------------- | --------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `span_cluster_prefix` | The prefix for the key for saving clusters of spans. ~~bool~~ |
|
||||
|
||||
## CoreferenceResolver.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/coref#call) and [`pipe`](/api/coref#pipe) delegate to the
|
||||
[`predict`](/api/coref#predict) and
|
||||
[`set_annotations`](/api/coref#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> # This usually happens under the hood
|
||||
> processed = coref(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## CoreferenceResolver.pipe {#pipe tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/coref#call) and
|
||||
[`pipe`](/api/coref#pipe) delegate to the [`predict`](/api/coref#predict) and
|
||||
[`set_annotations`](/api/coref#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> for doc in coref.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## CoreferenceResolver.initialize {#initialize tag="method"}
|
||||
|
||||
Initialize the component for training. `get_examples` should be a function that
|
||||
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
||||
should be supplied.** The data examples are used to **initialize the model** of
|
||||
the component and can either be the full training data or a representative
|
||||
sample. Initialization includes validating the network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> coref.initialize(lambda: examples, nlp=nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
|
||||
## CoreferenceResolver.predict {#predict tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||
modifying them. Clusters are returned as a list of `MentionClusters`, one for
|
||||
each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
|
||||
of `int`s, where each item corresponds to a cluster, and the `int`s correspond
|
||||
to token indices.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> clusters = coref.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ |
|
||||
|
||||
## CoreferenceResolver.set_annotations {#set_annotations tag="method"}
|
||||
|
||||
Modify a batch of documents, saving coreference clusters in `Doc.spans`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> clusters = coref.predict([doc1, doc2])
|
||||
> coref.set_annotations([doc1, doc2], clusters)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | ---------------------------------------------------------------------------- |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `clusters` | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ |
|
||||
|
||||
## CoreferenceResolver.update {#update tag="method"}
|
||||
|
||||
Learn from a batch of [`Example`](/api/example) objects. Delegates to
|
||||
[`predict`](/api/coref#predict).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = coref.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## CoreferenceResolver.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> optimizer = coref.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## CoreferenceResolver.use_params {#use_params tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||||
context, the original parameters are restored.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> with coref.use_params(optimizer.averages):
|
||||
> coref.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## CoreferenceResolver.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> coref.to_disk("/path/to/coref")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## CoreferenceResolver.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> coref.from_disk("/path/to/coref")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `CoreferenceResolver` object. ~~CoreferenceResolver~~ |
|
||||
|
||||
## CoreferenceResolver.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> coref_bytes = coref.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring, including the `KnowledgeBase`.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `CoreferenceResolver` object. ~~bytes~~ |
|
||||
|
||||
## CoreferenceResolver.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> coref_bytes = coref.to_bytes()
|
||||
> coref = nlp.add_pipe("experimental_coref")
|
||||
> coref.from_bytes(coref_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `CoreferenceResolver` object. ~~CoreferenceResolver~~ |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = coref.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
|
@ -153,3 +153,36 @@ whole pipeline has run.
|
|||
| `attrs` | A dict of the `Doc` attributes and the values to set them to. Defaults to `{"tensor": None, "_.trf_data": None}` to clean up after `tok2vec` and `transformer` components. ~~dict~~ |
|
||||
| `silent` | If `False`, show warnings if attributes aren't found or can't be set. Defaults to `True`. ~~bool~~ |
|
||||
| **RETURNS** | The modified `Doc` with the modified attributes. ~~Doc~~ |
|
||||
|
||||
## span_cleaner {#span_cleaner tag="function,experimental"}
|
||||
|
||||
Remove `SpanGroup`s from `doc.spans` based on a key prefix. This is used to
|
||||
clean up after the [`CoreferenceResolver`](/api/coref) when it's paired with a
|
||||
[`SpanResolver`](/api/span-resolver).
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This pipeline function is not yet integrated into spaCy core, and is available
|
||||
via the extension package
|
||||
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
|
||||
in version 0.6.0. It exposes the component via
|
||||
[entry points](/usage/saving-loading/#entry-points), so if you have the package
|
||||
installed, using `factory = "span_cleaner"` in your
|
||||
[training config](/usage/training#config) or `nlp.add_pipe("span_cleaner")` will
|
||||
work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> config = {"prefix": "coref_head_clusters"}
|
||||
> nlp.add_pipe("span_cleaner", config=config)
|
||||
> doc = nlp("text")
|
||||
> assert "coref_head_clusters_1" not in doc.spans
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ----------- | ------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `prefix` | A prefix to check `SpanGroup` keys for. Any matching groups will be removed. Defaults to `"coref_head_clusters"`. ~~str~~ |
|
||||
| **RETURNS** | The modified `Doc` with any matching spans removed. ~~Doc~~ |
|
||||
|
|
|
@ -270,3 +270,62 @@ Compute micro-PRF and per-entity PRF scores.
|
|||
| Name | Description |
|
||||
| ---------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
||||
|
||||
## score_coref_clusters {#score_coref_clusters tag="experimental"}
|
||||
|
||||
Returns LEA ([Moosavi and Strube, 2016](https://aclanthology.org/P16-1060/)) PRF
|
||||
scores for coreference clusters.
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
Note this scoring function is not yet included in spaCy core - for details, see
|
||||
the [CoreferenceResolver](/api/coref) docs.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = score_coref_clusters(
|
||||
> examples,
|
||||
> span_cluster_prefix="coref_clusters",
|
||||
> )
|
||||
> print(scores["coref_f"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `span_cluster_prefix` | The prefix used for spans representing coreference clusters. ~~str~~ |
|
||||
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
|
||||
|
||||
## score_span_predictions {#score_span_predictions tag="experimental"}
|
||||
|
||||
Return accuracy for reconstructions of spans from single tokens. Only exactly
|
||||
correct predictions are counted as correct, there is no partial credit for near
|
||||
answers. Used by the [SpanResolver](/api/span-resolver).
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
Note this scoring function is not yet included in spaCy core - for details, see
|
||||
the [SpanResolver](/api/span-resolver) docs.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = score_span_predictions(
|
||||
> examples,
|
||||
> output_prefix="coref_clusters",
|
||||
> )
|
||||
> print(scores["span_coref_clusters_accuracy"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `output_prefix` | The prefix used for spans representing the final predicted spans. ~~str~~ |
|
||||
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
|
||||
|
|
|
@ -0,0 +1,356 @@
|
|||
---
|
||||
title: SpanResolver
|
||||
tag: class,experimental
|
||||
source: spacy-experimental/coref/span_resolver_component.py
|
||||
teaser: 'Pipeline component for resolving tokens into spans'
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: span_resolver
|
||||
api_trainable: true
|
||||
---
|
||||
|
||||
> #### Installation
|
||||
>
|
||||
> ```bash
|
||||
> $ pip install -U spacy-experimental
|
||||
> ```
|
||||
|
||||
<Infobox title="Important note" variant="warning">
|
||||
|
||||
This component not yet integrated into spaCy core, and is available via the
|
||||
extension package
|
||||
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
|
||||
in version 0.6.0. It exposes the component via
|
||||
[entry points](/usage/saving-loading/#entry-points), so if you have the package
|
||||
installed, using `factory = "experimental_span_resolver"` in your
|
||||
[training config](/usage/training#config) or
|
||||
`nlp.add_pipe("experimental_span_resolver")` will work out-of-the-box.
|
||||
|
||||
</Infobox>
|
||||
|
||||
A `SpanResolver` component takes in tokens (represented as `Span` objects of
|
||||
length 1) and resolves them into `Span` objects of arbitrary length. The initial
|
||||
use case is as a post-processing step on word-level
|
||||
[coreference resolution](/api/coref). The input and output keys used to store
|
||||
`Span` objects are configurable.
|
||||
|
||||
## Assigned Attributes {#assigned-attributes}
|
||||
|
||||
Predictions will be saved to `Doc.spans` as [`SpanGroup`s](/api/spangroup).
|
||||
|
||||
Input token spans will be read in using an input prefix, by default
|
||||
`"coref_head_clusters"`, and output spans will be saved using an output prefix
|
||||
(default `"coref_clusters"`) plus a serial number starting from one. The
|
||||
prefixes are configurable.
|
||||
|
||||
| Location | Value |
|
||||
| ------------------------------------------------- | ------------------------------------------------------------------------- |
|
||||
| `Doc.spans[output_prefix + "_" + cluster_number]` | One group of predicted spans. Cluster number starts from 1. ~~SpanGroup~~ |
|
||||
|
||||
## Config and implementation {#config}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures#coref-architectures) documentation for
|
||||
details on the architectures and their arguments and hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy_experimental.coref.span_resolver_component import DEFAULT_SPAN_RESOLVER_MODEL
|
||||
> from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX, DEFAULT_CLUSTER_HEAD_PREFIX
|
||||
> config={
|
||||
> "model": DEFAULT_SPAN_RESOLVER_MODEL,
|
||||
> "input_prefix": DEFAULT_CLUSTER_HEAD_PREFIX,
|
||||
> "output_prefix": DEFAULT_CLUSTER_PREFIX,
|
||||
> },
|
||||
> nlp.add_pipe("experimental_span_resolver", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanResolver](/api/architectures#SpanResolver). ~~Model~~ |
|
||||
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
|
||||
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
|
||||
|
||||
## SpanResolver.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
>
|
||||
> # Construction via add_pipe with custom model
|
||||
> config = {"model": {"@architectures": "my_span_resolver.v1"}}
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy_experimental.coref.span_resolver_component import SpanResolver
|
||||
> span_resolver = SpanResolver(nlp.vocab, model)
|
||||
> ```
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | --------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
|
||||
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
|
||||
|
||||
## SpanResolver.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](#call) and [`pipe`](#pipe) delegate to the [`predict`](#predict)
|
||||
and [`set_annotations`](#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> # This usually happens under the hood
|
||||
> processed = span_resolver(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## SpanResolver.pipe {#pipe tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/span-resolver#call) and
|
||||
[`pipe`](/api/span-resolver#pipe) delegate to the
|
||||
[`predict`](/api/span-resolver#predict) and
|
||||
[`set_annotations`](/api/span-resolver#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> for doc in span_resolver.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## SpanResolver.initialize {#initialize tag="method"}
|
||||
|
||||
Initialize the component for training. `get_examples` should be a function that
|
||||
returns an iterable of [`Example`](/api/example) objects. **At least one example
|
||||
should be supplied.** The data examples are used to **initialize the model** of
|
||||
the component and can either be the full training data or a representative
|
||||
sample. Initialization includes validating the network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> span_resolver.initialize(lambda: examples, nlp=nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
|
||||
## SpanResolver.predict {#predict tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||||
modifying them. Predictions are returned as a list of `MentionClusters`, one for
|
||||
each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
|
||||
of `int`s, where each item corresponds to an input `SpanGroup`, and the `int`s
|
||||
correspond to token indices.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> spans = span_resolver.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ |
|
||||
|
||||
## SpanResolver.set_annotations {#set_annotations tag="method"}
|
||||
|
||||
Modify a batch of documents, saving predictions using the output prefix in
|
||||
`Doc.spans`.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> spans = span_resolver.predict([doc1, doc2])
|
||||
> span_resolver.set_annotations([doc1, doc2], spans)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | ------------------------------------------------------------- |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ |
|
||||
|
||||
## SpanResolver.update {#update tag="method"}
|
||||
|
||||
Learn from a batch of [`Example`](/api/example) objects. Delegates to
|
||||
[`predict`](/api/span-resolver#predict).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = span_resolver.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## SpanResolver.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> optimizer = span_resolver.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## SpanResolver.use_params {#use_params tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||||
context, the original parameters are restored.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> with span_resolver.use_params(optimizer.averages):
|
||||
> span_resolver.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## SpanResolver.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> span_resolver.to_disk("/path/to/span_resolver")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## SpanResolver.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> span_resolver.from_disk("/path/to/span_resolver")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `SpanResolver` object. ~~SpanResolver~~ |
|
||||
|
||||
## SpanResolver.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> span_resolver_bytes = span_resolver.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `SpanResolver` object. ~~bytes~~ |
|
||||
|
||||
## SpanResolver.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> span_resolver_bytes = span_resolver.to_bytes()
|
||||
> span_resolver = nlp.add_pipe("experimental_span_resolver")
|
||||
> span_resolver.from_bytes(span_resolver_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `SpanResolver` object. ~~SpanResolver~~ |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = span_resolver.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
|
@ -94,6 +94,7 @@
|
|||
"label": "Pipeline",
|
||||
"items": [
|
||||
{ "text": "AttributeRuler", "url": "/api/attributeruler" },
|
||||
{ "text": "CoreferenceResolver", "url": "/api/coref" },
|
||||
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
|
||||
{ "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" },
|
||||
{ "text": "EntityLinker", "url": "/api/entitylinker" },
|
||||
|
@ -104,6 +105,7 @@
|
|||
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
|
||||
{ "text": "Sentencizer", "url": "/api/sentencizer" },
|
||||
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
|
||||
{ "text": "SpanResolver", "url": "/api/span-resolver" },
|
||||
{ "text": "SpanRuler", "url": "/api/spanruler" },
|
||||
{ "text": "Tagger", "url": "/api/tagger" },
|
||||
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },
|
||||
|
|
Loading…
Reference in New Issue