spaCy/website/api/pipe.jade

449 lines
12 KiB
Plaintext
Raw Normal View History

2017-10-03 12:27:22 +00:00
//- 💫 DOCS > API > PIPE
include ../_includes/_mixins
//- This page can be used as a template for all other classes that inherit
//- from `Pipe`.
if subclass
+infobox
| This class is a subclass of #[+api("pipe") #[code Pipe]] and
| follows the same API. The pipeline component is available in the
| #[+a("/usage/processing-pipelines") processing pipeline] via the ID
| #[code "#{pipeline_id}"].
else
p
| This class is not instantiated directly. Components inherit from it,
| and it defines the interface that components should follow to
| function as components in a spaCy analysis pipeline.
- CLASSNAME = subclass || 'Pipe'
- VARNAME = short || CLASSNAME.toLowerCase()
+h(2, "model") #{CLASSNAME}.Model
+tag classmethod
p
| Initialise a model for the pipe. The model should implement the
2017-11-07 13:48:17 +00:00
| #[code thinc.neural.Model] API. Wrappers are under development for
| most major machine learning libraries.
2017-10-03 12:27:22 +00:00
+table(["Name", "Type", "Description"])
+row
+cell #[code **kwargs]
+cell -
+cell Parameters for initialising the model
+row("foot")
+cell returns
+cell object
+cell The initialised model.
+h(2, "init") #{CLASSNAME}.__init__
+tag method
p Create a new pipeline instance.
+aside-code("Example").
from spacy.pipeline import #{CLASSNAME}
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
+table(["Name", "Type", "Description"])
+row
+cell #[code vocab]
+cell #[code Vocab]
+cell The shared vocabulary.
+row
+cell #[code model]
+cell #[code thinc.neural.Model] or #[code True]
+cell
| The model powering the pipeline component. If no model is
| supplied, the model is created when you call
| #[code begin_training], #[code from_disk] or #[code from_bytes].
+row
+cell #[code **cfg]
+cell -
+cell Configuration parameters.
+row("foot")
+cell returns
+cell #[code=CLASSNAME]
+cell The newly constructed object.
+h(2, "call") #{CLASSNAME}.__call__
+tag method
p
| Apply the pipe to one document. The document is modified in place, and
| returned. Both #[code #{CLASSNAME}.__call__] and
| #[code #{CLASSNAME}.pipe] should delegate to the
| #[code #{CLASSNAME}.predict] and #[code #{CLASSNAME}.set_annotations]
| methods.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
doc = nlp(u"This is a sentence.")
processed = #{VARNAME}(doc)
+table(["Name", "Type", "Description"])
+row
+cell #[code doc]
+cell #[code Doc]
+cell The document to process.
+row("foot")
+cell returns
+cell #[code Doc]
+cell The processed document.
+h(2, "pipe") #{CLASSNAME}.pipe
+tag method
p
| Apply the pipe to a stream of documents. Both
| #[code #{CLASSNAME}.__call__] and #[code #{CLASSNAME}.pipe] should
| delegate to the #[code #{CLASSNAME}.predict] and
| #[code #{CLASSNAME}.set_annotations] methods.
+aside-code("Example").
texts = [u'One doc', u'...', u'Lots of docs']
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
for doc in #{VARNAME}.pipe(texts, batch_size=50):
pass
+table(["Name", "Type", "Description"])
+row
+cell #[code stream]
+cell iterable
+cell A stream of documents.
+row
+cell #[code batch_size]
+cell int
+cell The number of texts to buffer. Defaults to #[code 128].
+row
+cell #[code n_threads]
+cell int
+cell
| The number of worker threads to use. If #[code -1], OpenMP will
| decide how many to use at run time. Default is #[code -1].
+row("foot")
+cell yields
+cell #[code Doc]
+cell Processed documents in the order of the original text.
+h(2, "predict") #{CLASSNAME}.predict
+tag method
p
| Apply the pipeline's model to a batch of docs, without modifying them.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
scores = #{VARNAME}.predict([doc1, doc2])
+table(["Name", "Type", "Description"])
+row
+cell #[code docs]
+cell iterable
+cell The documents to predict.
+row("foot")
+cell returns
+cell -
+cell Scores from the model.
+h(2, "set_annotations") #{CLASSNAME}.set_annotations
+tag method
p
| Modify a batch of documents, using pre-computed scores.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
scores = #{VARNAME}.predict([doc1, doc2])
#{VARNAME}.set_annotations([doc1, doc2], scores)
+table(["Name", "Type", "Description"])
+row
+cell #[code docs]
+cell iterable
+cell The documents to modify.
+row
+cell #[code scores]
+cell -
+cell The scores to set, produced by #[code #{CLASSNAME}.predict].
+h(2, "update") #{CLASSNAME}.update
+tag method
p
| Learn from a batch of documents and gold-standard information, updating
| the pipe's model. Delegates to #[code #{CLASSNAME}.predict] and
| #[code #{CLASSNAME}.get_loss].
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
losses = {}
optimizer = nlp.begin_training()
#{VARNAME}.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
+table(["Name", "Type", "Description"])
+row
+cell #[code docs]
+cell iterable
+cell A batch of documents to learn from.
+row
+cell #[code golds]
+cell iterable
+cell The gold-standard data. Must have the same length as #[code docs].
+row
+cell #[code drop]
+cell int
+cell The dropout rate.
+row
+cell #[code sgd]
+cell callable
+cell
| The optimizer. Should take two arguments #[code weights] and
| #[code gradient], and an optional ID.
+row
+cell #[code losses]
+cell dict
+cell
| Optional record of the loss during training. The value keyed by
| the model's name is updated.
+h(2, "get_loss") #{CLASSNAME}.get_loss
+tag method
p
| Find the loss and gradient of loss for the batch of documents and their
| predicted scores.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
scores = #{VARNAME}.predict([doc1, doc2])
loss, d_loss = #{VARNAME}.get_loss([doc1, doc2], [gold1, gold2], scores)
+table(["Name", "Type", "Description"])
+row
+cell #[code docs]
+cell iterable
+cell The batch of documents.
+row
+cell #[code golds]
+cell iterable
+cell The gold-standard data. Must have the same length as #[code docs].
+row
+cell #[code scores]
+cell -
+cell Scores representing the model's predictions.
+row("foot")
+cell returns
+cell tuple
+cell The loss and the gradient, i.e. #[code (loss, gradient)].
+h(2, "begin_training") #{CLASSNAME}.begin_training
+tag method
p
| Initialise the pipe for training, using data exampes if available. If no
| model has been initialised yet, the model is added.
2017-10-03 12:27:22 +00:00
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
nlp.pipeline.append(#{VARNAME})
optimizer = #{VARNAME}.begin_training(pipeline=nlp.pipeline)
2017-10-03 12:27:22 +00:00
+table(["Name", "Type", "Description"])
+row
+cell #[code gold_tuples]
+cell iterable
+cell
| Optional gold-standard annotations from which to construct
| #[+api("goldparse") #[code GoldParse]] objects.
+row
+cell #[code pipeline]
+cell list
+cell
| Optional list of #[+api("pipe") #[code Pipe]] components that
| this component is part of.
+row
+cell #[code sgd]
+cell callable
+cell
| An optional optimizer. Should take two arguments #[code weights]
| and #[code gradient], and an optional ID. Will be created via
| #[+api(CLASSNAME.toLowerCase() + "#create_optimizer") #[code create_optimizer]]
| if not set.
+row("foot")
+cell returns
+cell callable
+cell An optimizer.
+h(2, "create_optimizer") #{CLASSNAME}.create_optimizer
+tag method
p
| Create an optmizer for the pipeline component.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
optimizer = #{VARNAME}.create_optimizer()
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell callable
+cell The optimizer.
2017-10-03 12:27:22 +00:00
+h(2, "use_params") #{CLASSNAME}.use_params
+tag method
+tag contextmanager
p Modify the pipe's model, to use the given parameter values.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
with #{VARNAME}.use_params():
#{VARNAME}.to_disk('/best_model')
+table(["Name", "Type", "Description"])
+row
+cell #[code params]
+cell -
+cell
| The parameter values to use in the model. At the end of the
| context, the original parameters are restored.
2017-10-25 20:17:11 +00:00
+h(2, "add_label") #{CLASSNAME}.add_label
+tag method
p Add a new label to the pipe.
if CLASSNAME == "Tagger"
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}.add_label('MY_LABEL', {POS: 'NOUN'})
else
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}.add_label('MY_LABEL')
2017-10-25 20:17:11 +00:00
+table(["Name", "Type", "Description"])
+row
+cell #[code label]
+cell unicode
+cell The label to add.
if CLASSNAME == "Tagger"
+row
+cell #[code values]
+cell dict
+cell
| Optional values to map to the label, e.g. a tag map
| dictionary.
2017-10-03 12:27:22 +00:00
+h(2, "to_disk") #{CLASSNAME}.to_disk
+tag method
p Serialize the pipe to disk.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}.to_disk('/path/to/#{VARNAME}')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell
| A path to a directory, which will be created if it doesn't exist.
| Paths may be either strings or #[code Path]-like objects.
+h(2, "from_disk") #{CLASSNAME}.from_disk
+tag method
p Load the pipe from disk. Modifies the object in place and returns it.
+aside-code("Example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}.from_disk('/path/to/#{VARNAME}')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell
| A path to a directory. Paths may be either strings or
| #[code Path]-like objects.
+row("foot")
+cell returns
+cell #[code=CLASSNAME]
+cell The modified #[code=CLASSNAME] object.
+h(2, "to_bytes") #{CLASSNAME}.to_bytes
+tag method
+aside-code("example").
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}_bytes = #{VARNAME}.to_bytes()
p Serialize the pipe to a bytestring.
+table(["Name", "Type", "Description"])
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being serialized.
+row("foot")
+cell returns
+cell bytes
+cell The serialized form of the #[code=CLASSNAME] object.
+h(2, "from_bytes") #{CLASSNAME}.from_bytes
+tag method
p Load the pipe from a bytestring. Modifies the object in place and returns it.
+aside-code("Example").
#{VARNAME}_bytes = #{VARNAME}.to_bytes()
#{VARNAME} = #{CLASSNAME}(nlp.vocab)
#{VARNAME}.from_bytes(#{VARNAME}_bytes)
+table(["Name", "Type", "Description"])
+row
+cell #[code bytes_data]
+cell bytes
+cell The data to load from.
+row
+cell #[code **exclude]
+cell -
+cell Named attributes to prevent from being loaded.
+row("foot")
+cell returns
+cell #[code=CLASSNAME]
+cell The #[code=CLASSNAME] object.