mirror of https://github.com/explosion/spaCy.git
Update website for v2.0
This commit is contained in:
parent
bbd2a3dee1
commit
1768703e1c
|
@ -704,7 +704,7 @@ mixin landing-logos(title, logos)
|
|||
|
||||
mixin under-construction()
|
||||
+infobox("Under construction", "🚧")
|
||||
| This section is still being written and will be updated for the v2.0
|
||||
| release. Is there anything that you think should definitely mentioned
|
||||
| or explained here? Any examples you'd like to see?
|
||||
| This section is still being written and will be updated as soon as
|
||||
| possible. Is there anything that you think should definitely
|
||||
| mentioned or explained here? Any examples you'd like to see?
|
||||
| #[strong Let us know] on the #[+a(gh("spacy") + "/issues") issue tracker]!
|
||||
|
|
|
@ -6,8 +6,9 @@ nav.c-nav.u-text.js-nav(class=landing ? "c-nav--theme" : null)
|
|||
ul.c-nav__menu
|
||||
- var current_url = '/' + current.path[0]
|
||||
each url, item in NAVIGATION
|
||||
li.c-nav__menu__item(class=(current_url == url) ? "is-active" : null)
|
||||
+a(url)=item
|
||||
- var is_active = (current_url == url)
|
||||
li.c-nav__menu__item(class=is_active ? "is-active" : null)
|
||||
+a(url)(tabindex=is_active ? "-1" : null)=item
|
||||
|
||||
li.c-nav__menu__item.u-hidden-xs
|
||||
+a(gh("spaCy"))(aria-label="GitHub") #[+icon("github", 20)]
|
||||
|
|
|
@ -9,7 +9,7 @@ menu.c-sidebar.js-sidebar.u-text
|
|||
each url, item in items
|
||||
- var is_current = CURRENT == url || (CURRENT == "index" && url == "./")
|
||||
li.c-sidebar__item
|
||||
+a(url)(class=is_current ? "is-active" : null)=item
|
||||
+a(url)(class=is_current ? "is-active" : null tabindex=is_current ? "-1" : null)=item
|
||||
|
||||
if is_current
|
||||
if IS_MODELS && CURRENT_MODELS.length
|
||||
|
|
|
@ -27,8 +27,8 @@ else
|
|||
|
||||
p
|
||||
| Initialise a model for the pipe. The model should implement the
|
||||
| #[code thinc.neural.Model] API. Wrappers are available for
|
||||
| #[+a("/usage/deep-learning") most major machine learning libraries].
|
||||
| #[code thinc.neural.Model] API. Wrappers are under development for
|
||||
| most major machine learning libraries.
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
|
|
|
@ -43,12 +43,11 @@ include _includes/_mixins
|
|||
p
|
||||
| spaCy is the best way to prepare text for deep learning.
|
||||
| It interoperates seamlessly with TensorFlow, PyTorch,
|
||||
| scikit-learn, Gensim and the
|
||||
| rest of Python's awesome AI ecosystem. spaCy helps you
|
||||
| connect the statistical models trained by these libraries
|
||||
| to the rest of your application.
|
||||
| scikit-learn, Gensim and the rest of Python's awesome AI
|
||||
| ecosystem. With spaCy, you can easily construct linguistically
|
||||
| sophisticated statistical models for a variety of NLP problems.
|
||||
|
||||
+button("/usage/deep-learning", true, "primary")
|
||||
+button("/usage/training", true, "primary")
|
||||
| Read more
|
||||
|
||||
.o-content
|
||||
|
|
|
@ -11,8 +11,6 @@
|
|||
"Linguistic Features": "linguistic-features",
|
||||
"Processing Pipelines": "processing-pipelines",
|
||||
"Vectors & Similarity": "vectors-similarity",
|
||||
"Text Classification": "text-classification",
|
||||
"Deep Learning": "deep-learning",
|
||||
"Training Models": "training",
|
||||
"Adding Languages": "adding-languages",
|
||||
"Visualizers": "visualizers"
|
||||
|
@ -122,25 +120,6 @@
|
|||
}
|
||||
},
|
||||
|
||||
"deep-learning": {
|
||||
"title": "Deep Learning",
|
||||
"teaser": "Using spaCy to pre-process text for deep learning, and how to plug in your own machine learning models.",
|
||||
"next": "training",
|
||||
"menu": {
|
||||
"Pre-processing Text": "pre-processing",
|
||||
"spaCy and Thinc": "thinc",
|
||||
"TensorFlow / Keras": "tensorflow-keras",
|
||||
"scikit-learn": "scikit-learn",
|
||||
"PyTorch": "pytorch",
|
||||
"DyNet": "dynet"
|
||||
}
|
||||
},
|
||||
|
||||
"text-classification": {
|
||||
"title": "Text Classification",
|
||||
"next": "training"
|
||||
},
|
||||
|
||||
"training": {
|
||||
"title": "Training spaCy's Statistical Models",
|
||||
"next": "adding-languages",
|
||||
|
@ -181,6 +160,7 @@
|
|||
"resources": {
|
||||
"title": "Resources",
|
||||
"teaser": "Libraries, demos, books, courses and research systems featuring spaCy.",
|
||||
"next": "examples",
|
||||
"menu": {
|
||||
"Third-party libraries": "libraries",
|
||||
"Extensions": "extensions",
|
||||
|
|
|
@ -6,7 +6,7 @@ p
|
|||
| ecosystem of NLP libraries to work with. Here's how we think the pieces
|
||||
| fit together.
|
||||
|
||||
+aside("Using spaCy with other libraries")
|
||||
//-+aside("Using spaCy with other libraries")
|
||||
| For details on how to use spaCy together with popular machine learning
|
||||
| libraries like TensorFlow, Keras or PyTorch, see the
|
||||
| #[+a("/usage/deep-learning") usage guide on deep learning].
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
//- 💫 DOCS > USAGE > TEXT CLASSIFICATION
|
||||
|
||||
include ../_includes/_mixins
|
||||
|
||||
include _training/_textcat
|
Loading…
Reference in New Issue