python-benedict/README.md

750 lines
23 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[![](https://img.shields.io/pypi/pyversions/python-benedict.svg?color=blue&logo=python&logoColor=white)](https://www.python.org/)
[![](https://img.shields.io/pypi/v/python-benedict.svg?color=blue&logo=pypi&logoColor=white)](https://pypi.org/project/python-benedict/)
[![](https://pepy.tech/badge/python-benedict)](https://pepy.tech/project/python-benedict)
[![](https://img.shields.io/github/stars/fabiocaccamo/python-benedict?logo=github)](https://github.com/fabiocaccamo/python-benedict/)
[![](https://img.shields.io/pypi/l/python-benedict.svg?color=blue)](https://github.com/fabiocaccamo/python-benedict/blob/master/LICENSE.txt)
[![](https://img.shields.io/travis/fabiocaccamo/python-benedict?logo=travis&label=build)](https://travis-ci.org/fabiocaccamo/python-benedict)
[![](https://img.shields.io/circleci/build/gh/fabiocaccamo/python-benedict?logo=circleci&label=build)](https://circleci.com/gh/fabiocaccamo/python-benedict)
[![](https://img.shields.io/codecov/c/gh/fabiocaccamo/python-benedict?logo=codecov)](https://codecov.io/gh/fabiocaccamo/python-benedict)
[![](https://img.shields.io/codacy/grade/0dbd5cc2089f4dce80a0e49e6822be3c?logo=codacy)](https://www.codacy.com/app/fabiocaccamo/python-benedict)
[![](https://img.shields.io/scrutinizer/quality/g/fabiocaccamo/python-benedict?logo=scrutinizer)](https://scrutinizer-ci.com/g/fabiocaccamo/python-benedict/?branch=master)
[![](https://img.shields.io/codeclimate/maintainability/fabiocaccamo/python-benedict?logo=code-climate)](https://codeclimate.com/github/fabiocaccamo/python-benedict/)
[![](https://requires.io/github/fabiocaccamo/python-benedict/requirements.svg?branch=master)](https://requires.io/github/fabiocaccamo/python-benedict/requirements/?branch=master)
# python-benedict
python-benedict is a dict subclass with **keylist/keypath** support, **I/O** shortcuts (`Base64`, `CSV`, `JSON`, `TOML`, `XML`, `YAML`, `query-string`) and many **utilities**... for humans, obviously.
## Features
- 100% **backward-compatible**, you can safely wrap existing dictionaries.
- **Keylist** support using **list of keys** as key.
- **Keypath** support using **keypath-separator** *(dot syntax by default)*.
- Keypath **list-index** support *(also negative)* using the standard `[n]` suffix.
- Easy **I/O operations** with most common formats: `Base64`, `CSV`, `JSON`, `TOML`, `XML`, `YAML`, `query-string`.
- Many **utility** and **parse methods** to retrieve data as needed *(check the [API](#api) section)*.
- Well **tested**. ;)
## Index
- [Installation](#installation)
- [Usage](#usage)
- [Basics](#basics)
- [Keylist](#keylist)
- [Keypath](#keypath)
- [Custom keypath separator](#custom-keypath-separator)
- [Change keypath separator](#change-keypath-separator)
- [Disable keypath functionality](#disable-keypath-functionality)
- [List index support](#list-index-support)
- [API](#api)
- [Utility methods](#utility-methods)
- [I/O methods](#io-methods)
- [Parse methods](#parse-methods)
- [Testing](#testing)
- [License](#license)
## Installation
- Run `pip install python-benedict`
## Usage
### Basics
`benedict` is a `dict` subclass, so it is possible to use it as a normal dictionary *(you can just cast an existing dict)*.
```python
from benedict import benedict
# create a new empty instance
d = benedict()
# or cast an existing dict
d = benedict(existing_dict)
# or create from data source (filepath, url or data-string) in a supported format:
# Base64, CSV, JSON, TOML, XML, YAML, query-string
d = benedict('https://localhost:8000/data.json', format='json')
# or in a Django view
params = benedict(request.GET.items())
page = params.get_int('page', 1)
```
### Keylist
Wherever a **key** is used, it is possible to use also a **list (or a tuple) of keys**.
```python
d = benedict()
# set values by keys list
d['profile', 'firstname'] = 'Fabio'
d['profile', 'lastname'] = 'Caccamo'
print(d) # -> { 'profile':{ 'firstname':'Fabio', 'lastname':'Caccamo' } }
print(d['profile']) # -> { 'firstname':'Fabio', 'lastname':'Caccamo' }
# check if keypath exists in dict
print(['profile', 'lastname'] in d) # -> True
# delete value by keys list
del d['profile', 'lastname']
print(d['profile']) # -> { 'firstname':'Fabio' }
```
### Keypath
`.` is the default keypath separator.
If you cast an existing dict and its keys contain the keypath separator a `ValueError` will be raised.
In this case you should use a [custom keypath separator](#custom-keypath-separator) or [disable keypath functionality](#disable-keypath-functionality).
```python
d = benedict()
# set values by keypath
d['profile.firstname'] = 'Fabio'
d['profile.lastname'] = 'Caccamo'
print(d) # -> { 'profile':{ 'firstname':'Fabio', 'lastname':'Caccamo' } }
print(d['profile']) # -> { 'firstname':'Fabio', 'lastname':'Caccamo' }
# check if keypath exists in dict
print('profile.lastname' in d) # -> True
# delete value by keypath
del d['profile.lastname']
```
#### Custom keypath separator
You can customize the keypath separator passing the `keypath_separator` argument in the constructor.
If you pass an existing dict to the constructor and its keys contain the keypath separator an `Exception` will be raised.
```python
d = benedict(existing_dict, keypath_separator='/')
```
#### Change keypath separator
You can change the `keypath_separator` at any time using the `getter/setter` property.
If any existing key contains the new `keypath_separator` an `Exception` will be raised.
```python
d.keypath_separator = '/'
```
#### Disable keypath functionality
You can disable the keypath functionality passing `keypath_separator=None` in the constructor.
```python
d = benedict(existing_dict, keypath_separator=None)
```
You can disable the keypath functionality using the `getter/setter` property.
```python
d.keypath_separator = None
```
#### List index support
List index are supported, keypaths can include indexes *(also negative)* using `[n]`, to perform any operation very fast:
```python
# Eg. get last location cordinates of the first result:
loc = d['results[0].locations[-1].coordinates']
lat = loc.get_decimal('latitude')
lng = loc.get_decimal('longitude')
```
### API
- **Utility methods**
- [`clean`](#clean)
- [`clone`](#clone)
- [`dump`](#dump)
- [`filter`](#filter)
- [`flatten`](#flatten)
- [`groupby`](#groupby)
- [`invert`](#invert)
- [`items_sorted_by_keys`](#items_sorted_by_keys)
- [`items_sorted_by_values`](#items_sorted_by_values)
- [`keypaths`](#keypaths)
- [`merge`](#merge)
- [`move`](#move)
- [`nest`](#nest)
- [`remove`](#remove)
- [`rename`](#rename)
- [`search`](#search)
- [`standardize`](#standardize)
- [`subset`](#subset)
- [`swap`](#swap)
- [`traverse`](#traverse)
- [`unflatten`](#unflatten)
- [`unique`](#unique)
- **I/O methods**
- [`from_base64`](#from_base64)
- [`from_csv`](#from_csv)
- [`from_json`](#from_json)
- [`from_query_string`](#from_query_string)
- [`from_toml`](#from_toml)
- [`from_xml`](#from_xml)
- [`from_yaml`](#from_yaml)
- [`to_base64`](#to_base64)
- [`to_csv`](#to_csv)
- [`to_json`](#to_json)
- [`to_query_string`](#to_query_string)
- [`to_toml`](#to_toml)
- [`to_xml`](#to_xml)
- [`to_yaml`](#to_yaml)
- **Parse methods**
- [`get_bool`](#get_bool)
- [`get_bool_list`](#get_bool_list)
- [`get_datetime`](#get_datetime)
- [`get_datetime_list`](#get_datetime_list)
- [`get_decimal`](#get_decimal)
- [`get_decimal_list`](#get_decimal_list)
- [`get_dict`](#get_dict)
- [`get_email`](#get_email)
- [`get_float`](#get_float)
- [`get_float_list`](#get_float_list)
- [`get_int`](#get_int)
- [`get_int_list`](#get_int_list)
- [`get_list`](#get_list)
- [`get_list_item`](#get_list_item)
- [`get_phonenumber`](#get_phonenumber)
- [`get_slug`](#get_slug)
- [`get_slug_list`](#get_slug_list)
- [`get_str`](#get_str)
- [`get_str_list`](#get_str_list)
### Utility methods
These methods are common utilities that will speed up your everyday work.
Utilities that accept key argument(s) also support keypath(s).
Utilities that return a dictionary always return a new `benedict` instance.
- #### clean
```python
# Clean the current dict instance removing all empty values: None, '', {}, [], ().
# If strings or collections (dict, list, set, tuple) flags are False,
# related empty values will not be deleted.
d.clean(strings=True, collections=True)
```
- #### clone
```python
# Return a clone (deepcopy) of the dict.
c = d.clone()
```
- #### dump
```python
# Return a readable representation of any dict/list.
# This method can be used both as static method or instance method.
s = benedict.dump(d.keypaths())
print(s)
# or
d = benedict()
print(d.dump())
```
- #### filter
```python
# Return a filtered dict using the given predicate function.
# Predicate function receives key, value arguments and should return a bool value.
predicate = lambda k, v: v is not None
f = d.filter(predicate)
```
- #### flatten
```python
# Return a new flattened dict using the given separator to join nested dict keys to flatten keypaths.
f = d.flatten(separator='_')
```
- #### groupby
```python
# Group a list of dicts at key by the value of the given by_key and return a new dict.
g = d.groupby('cities', by_key='country_code')
```
- #### invert
```python
# Return an inverted dict where values become keys and keys become values.
# Since multiple keys could have the same value, each value will be a list of keys.
# If flat is True each value will be a single value (use this only if values are unique).
i = d.invert(flat=False)
```
- #### items_sorted_by_keys
```python
# Return items (key/value list) sorted by keys.
# If reverse is True, the list will be reversed.
items = d.items_sorted_by_keys(reverse=False)
```
- #### items_sorted_by_values
```python
# Return items (key/value list) sorted by values.
# If reverse is True, the list will be reversed.
items = d.items_sorted_by_values(reverse=False)
```
- #### keypaths
```python
# Return a list of all keypaths in the dict.
k = d.keypaths()
print(k)
```
- #### merge
```python
# Merge one or more dictionary objects into current instance (deepupdate).
# Sub-dictionaries keys will be merged toghether.
d.merge(a, b, c)
```
- #### move
```python
# Move an item from key_src to key_dst.
# It can be used to rename a key.
# If key_dst exists, its value will be overwritten.
d.move('a', 'b', overwrite=True)
```
- #### nest
```python
# Nest a list of dicts at the given key and return a new nested list
# using the specified keys to establish the correct items hierarchy.
d.nest('values', id_key='id', parent_id_key='parent_id', children_key='children')
```
- #### remove
```python
# Remove multiple keys from the dict.
# It is possible to pass a single key or more keys (as list or *args).
d.remove(['firstname', 'lastname', 'email'])
```
- #### rename
```python
# Rename a dict item key from 'key' to 'key_new'.
# If key_new exists, a KeyError will be raised.
d.rename('first_name', 'firstname')
```
- #### search
```python
# Search and return a list of items (dict, key, value, ) matching the given query.
r = d.search('hello', in_keys=True, in_values=True, exact=False, case_sensitive=False)
```
- #### standardize
```python
# Standardize all dict keys, e.g. "Location Latitude" -> "location_latitude".
d.standardize()
```
- #### subset
```python
# Return a dict subset for the given keys.
# It is possible to pass a single key or more keys (as list or *args).
s = d.subset(['firstname', 'lastname', 'email'])
```
- #### swap
```python
# Swap items values at the given keys.
d.swap('firstname', 'lastname')
```
- #### traverse
```python
# Traverse a dict passing each item (dict, key, value) to the given callback function.
def f(d, key, value):
print('dict: {} - key: {} - value: {}'.format(d, key, value))
d.traverse(f)
```
- #### unflatten
```python
# Return a new unflattened dict using the given separator to split dict keys to nested keypaths.
u = d.unflatten(separator='_')
```
- #### unique
```python
# Remove duplicated values from the dict.
d.unique()
```
### I/O methods
It is possible to create a `benedict` instance directly from data source (filepath, url or data-string) by passing the data source and the data format (default 'json') in the constructor.
```python
# filepath
d = benedict('/root/data.yml', format='yaml')
# url
d = benedict('https://localhost:8000/data.xml', format='xml')
# data-string
d = benedict('{"a": 1, "b": 2, "c": 3, "x": 7, "y": 8, "z": 9}')
```
These methods simplify I/O operations with most common formats: `base64`, `csv`, `json`, `toml`, `xml`, `yaml`, `query-string`
In all `from_*` methods, the first argument can be: **url**, **filepath** or **data-string**.
In all `to_*` methods, if `filepath='...'` kwarg is specified, the output will be also **saved** at the specified filepath.
- #### from_base64
```python
# Try to load/decode a base64 encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# It's possible to choose the subformat used under the hood (`csv`, `json`, `query-string`, `toml`, `xml`, `yaml`), default: 'json'.
# It's possible to choose the encoding, default 'utf-8'.
# A ValueError is raised in case of failure.
d = benedict.from_base64(s, subformat='json', encoding='utf-8', **kwargs)
```
- #### from_csv
```python
# Try to load/decode a csv encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.ù
# It's possible to specify the columns list, default: None (in this case the first row values will be used as keys).
# It's possible to pass decoder specific options using kwargs: https://docs.python.org/3/library/csv.html
# A ValueError is raised in case of failure.
d = benedict.from_csv(s, columns=None, columns_row=True, **kwargs)
```
- #### from_json
```python
# Try to load/decode a json encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# It's possible to pass decoder specific options using kwargs: https://docs.python.org/3/library/json.html
# A ValueError is raised in case of failure.
d = benedict.from_json(s, **kwargs)
```
- #### from_query_string
```python
# Try to load/decode a query-string and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# A ValueError is raised in case of failure.
d = benedict.from_query_string(s, **kwargs)
```
- #### from_toml
```python
# Try to load/decode a toml encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# It's possible to pass decoder specific options using kwargs: https://pypi.org/project/toml/
# A ValueError is raised in case of failure.
d = benedict.from_toml(s, **kwargs)
```
- #### from_xml
```python
# Try to load/decode a xml encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# It's possible to pass decoder specific options using kwargs: https://github.com/martinblech/xmltodict
# A ValueError is raised in case of failure.
d = benedict.from_xml(s, **kwargs)
```
- #### from_yaml
```python
# Try to load/decode a yaml encoded data and return it as benedict instance.
# Accept as first argument: url, filepath or data-string.
# It's possible to pass decoder specific options using kwargs: https://pyyaml.org/wiki/PyYAMLDocumentation
# A ValueError is raised in case of failure.
d = benedict.from_yaml(s, **kwargs)
```
- #### to_base64
```python
# Return the dict instance encoded in base64 format and optionally save it at the specified 'filepath'.
# It's possible to choose the subformat used under the hood ('csv', json', `query-string`, 'toml', 'xml', 'yaml'), default: 'json'.
# It's possible to choose the encoding, default 'utf-8'.
# It's possible to pass decoder specific options using kwargs.
# A ValueError is raised in case of failure.
s = d.to_base64(subformat='json', encoding='utf-8', **kwargs)
```
- #### to_csv
```python
# Return a list of dicts encoded in csv format and optionally save it at the specified filepath.
# It's possible to specify the key of the item (list of dicts) to encode, default: 'values'.
# It's possible to specify the columns list, default: None (in this case the keys of the first item will be used).
# A ValueError is raised in case of failure.
d = benedict.to_csv(key='values', columns=None, columns_row=True, **kwargs)
```
- #### to_json
```python
# Return the dict instance encoded in json format and optionally save it at the specified filepath.
# It's possible to pass encoder specific options using kwargs: https://docs.python.org/3/library/json.html
# A ValueError is raised in case of failure.
s = d.to_json(**kwargs)
```
- #### to_query_string
```python
# Return the dict instance as query-string and optionally save it at the specified filepath.
# A ValueError is raised in case of failure.
s = d.to_query_string(**kwargs)
```
- #### to_toml
```python
# Return the dict instance encoded in toml format and optionally save it at the specified filepath.
# It's possible to pass encoder specific options using kwargs: https://pypi.org/project/toml/
# A ValueError is raised in case of failure.
s = d.to_toml(**kwargs)
```
- #### to_xml
```python
# Return the dict instance encoded in xml format and optionally save it at the specified filepath.
# It's possible to pass encoder specific options using kwargs: https://github.com/martinblech/xmltodict
# A ValueError is raised in case of failure.
s = d.to_xml(**kwargs)
```
- #### to_yaml
```python
# Return the dict instance encoded in yaml format.
# If filepath option is passed the output will be saved ath
# It's possible to pass encoder specific options using kwargs: https://pyyaml.org/wiki/PyYAMLDocumentation
# A ValueError is raised in case of failure.
s = d.to_yaml(**kwargs)
```
### Parse methods
These methods are wrappers of the `get` method, they parse data trying to return it in the expected type.
- #### get_bool
```python
# Get value by key or keypath trying to return it as bool.
# Values like `1`, `true`, `yes`, `on`, `ok` will be returned as `True`.
d.get_bool(key, default=False)
```
- #### get_bool_list
```python
# Get value by key or keypath trying to return it as list of bool values.
# If separator is specified and value is a string it will be splitted.
d.get_bool_list(key, default=[], separator=',')
```
- #### get_datetime
```python
# Get value by key or keypath trying to return it as datetime.
# If format is not specified it will be autodetected.
# If choices and value is in choices return value otherwise default.
d.get_datetime(key, default=None, format=None, choices=[])
```
- #### get_datetime_list
```python
# Get value by key or keypath trying to return it as list of datetime values.
# If separator is specified and value is a string it will be splitted.
d.get_datetime_list(key, default=[], format=None, separator=',')
```
- #### get_decimal
```python
# Get value by key or keypath trying to return it as Decimal.
# If choices and value is in choices return value otherwise default.
d.get_decimal(key, default=Decimal('0.0'), choices=[])
```
- #### get_decimal_list
```python
# Get value by key or keypath trying to return it as list of Decimal values.
# If separator is specified and value is a string it will be splitted.
d.get_decimal_list(key, default=[], separator=',')
```
- #### get_dict
```python
# Get value by key or keypath trying to return it as dict.
# If value is a json string it will be automatically decoded.
d.get_dict(key, default={})
```
- #### get_email
```python
# Get email by key or keypath and return it.
# If value is blacklisted it will be automatically ignored.
# If check_blacklist is False, it will be not ignored even if blacklisted.
d.get_email(key, default='', choices=None, check_blacklist=True)
```
- #### get_float
```python
# Get value by key or keypath trying to return it as float.
# If choices and value is in choices return value otherwise default.
d.get_float(key, default=0.0, choices=[])
```
- #### get_float_list
```python
# Get value by key or keypath trying to return it as list of float values.
# If separator is specified and value is a string it will be splitted.
d.get_float_list(key, default=[], separator=',')
```
- #### get_int
```python
# Get value by key or keypath trying to return it as int.
# If choices and value is in choices return value otherwise default.
d.get_int(key, default=0, choices=[])
```
- #### get_int_list
```python
# Get value by key or keypath trying to return it as list of int values.
# If separator is specified and value is a string it will be splitted.
d.get_int_list(key, default=[], separator=',')
```
- #### get_list
```python
# Get value by key or keypath trying to return it as list.
# If separator is specified and value is a string it will be splitted.
d.get_list(key, default=[], separator=',')
```
- #### get_list_item
```python
# Get list by key or keypath and return value at the specified index.
# If separator is specified and list value is a string it will be splitted.
d.get_list_item(key, index=0, default=None, separator=',')
```
- #### get_phonenumber
```python
# Get phone number by key or keypath and return a dict with different formats (e164, international, national).
# If country code is specified (alpha 2 code), it will be used to parse phone number correctly.
d.get_phonenumber(key, country_code=None, default=None)
```
- #### get_slug
```python
# Get value by key or keypath trying to return it as slug.
# If choices and value is in choices return value otherwise default.
d.get_slug(key, default='', choices=[])
```
- #### get_slug_list
```python
# Get value by key or keypath trying to return it as list of slug values.
# If separator is specified and value is a string it will be splitted.
d.get_slug_list(key, default=[], separator=',')
```
- #### get_str
```python
# Get value by key or keypath trying to return it as string.
# Encoding issues will be automatically fixed.
# If choices and value is in choices return value otherwise default.
d.get_str(key, default='', choices=[])
```
- #### get_str_list
```python
# Get value by key or keypath trying to return it as list of str values.
# If separator is specified and value is a string it will be splitted.
d.get_str_list(key, default=[], separator=',')
```
## Testing
```bash
# create python 3.8 virtual environment
virtualenv testing_benedict -p "python3.8" --no-site-packages
# activate virtualenv
cd testing_benedict && . bin/activate
# clone repo
git clone https://github.com/fabiocaccamo/python-benedict.git src && cd src
# install requirements
pip install --upgrade pip
pip install -r requirements.txt
pip install tox
# run tests using tox
tox
# or run tests using unittest
python -m unittest
# or run tests using setuptools
python setup.py test
```
## License
Released under [MIT License](LICENSE.txt).