Adding benchmarks

This commit is contained in:
Michael Droettboom 2018-04-05 18:07:33 -04:00
parent 8875c17b5c
commit d0973c9fd5
42 changed files with 1102 additions and 7 deletions

View File

@ -6,6 +6,7 @@ PYMINOR=$(basename $(PYVERSION))
CPYTHONROOT=cpython
CPYTHONLIB=$(CPYTHONROOT)/installs/python-$(PYVERSION)/lib/python$(PYMINOR)
CPYTHONINC=$(CPYTHONROOT)/installs/python-$(PYVERSION)/include/python$(PYMINOR)
HOSTPYTHON=$(CPYTHONROOT)/build/$(PYVERSION)/host/bin/python3
CC=emcc
CXX=em++
@ -62,6 +63,11 @@ test: all build/test.html
py.test test
benchmark: all build/test.html
python benchmark/benchmark.py $(HOSTPYTHON) $(BUILD)/benchmarks.json
python benchmark/plot_benchmark.py benchmarks.json $(BUILD)/benchmarks.png
clean:
rm -fr root
rm build/*
@ -88,6 +94,7 @@ root/.built: \
cp src/lazy_import.py $(SITEPACKAGES)
cp src/sitecustomize.py $(SITEPACKAGES)
cp src/webbrowser.py root/lib/python$(PYMINOR)
cp src/pystone.py root/lib/python$(PYMINOR)
( \
cd root/lib/python$(PYMINOR); \
rm -fr `cat ../../../remove_modules.txt`; \

94
benchmark/benchmark.py Normal file
View File

@ -0,0 +1,94 @@
import json
import os
import re
import subprocess
import sys
sys.path.insert(0, os.path.abspath(
os.path.join(os.path.dirname(__file__), '..', 'test')))
import conftest
SKIP = set(['fft', 'hyantes'])
def run_native(hostpython, code):
output = subprocess.check_output(
[os.path.abspath(hostpython), '-c', code],
cwd=os.path.dirname(__file__),
env={
'PYTHONPATH':
os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src'))}
)
return float(output.strip().split()[-1])
def run_wasm(code):
s = conftest.SeleniumWrapper()
s.run(code)
runtime = float(s.logs[-1])
s.driver.quit()
return runtime
def run_both(hostpython, code):
a = run_native(hostpython, code)
print(a)
b = run_wasm(code)
print(b)
result = (a, b)
return result
def get_pystone_benchmarks():
yield 'pystone', (
"import pystone\n"
"pystone.main(pystone.LOOPS)\n"
)
def parse_numpy_benchmark(filename):
lines = []
with open(filename) as fp:
for line in fp:
m = re.match('^#(setup|run): (.*)$', line)
if m:
line = '{} = {!r}\n'.format(m.group(1), m.group(2))
lines.append(line)
return ''.join(lines)
def get_numpy_benchmarks():
root = '../numpy-benchmarks/benchmarks'
for filename in os.listdir(root):
name = os.path.splitext(filename)[0]
if name in SKIP:
continue
content = parse_numpy_benchmark(os.path.join(root, filename))
content += (
"setup = setup + '\\nfrom __main__ import {}'\n"
"from timeit import Timer\n"
"t = Timer(run, setup)\n"
"r = t.repeat(11, 40)\n"
"import numpy as np\n"
"print(np.mean(r))\n".format(name))
yield name, content
def get_benchmarks():
yield from get_pystone_benchmarks()
yield from get_numpy_benchmarks()
def main(hostpython):
results = {}
for k, v in get_benchmarks():
print(k)
results[k] = run_both(hostpython, v)
return results
if __name__ == '__main__':
results = main(sys.argv[-2])
with open(sys.argv[-1], 'w') as fp:
json.dump(results, fp)

View File

@ -0,0 +1 @@
From https://github.com/serge-sans-paille/numpy-benchmarks

View File

@ -0,0 +1,8 @@
#setup: import numpy as np ; N = 50 ; X, Y = np.random.randn(100,N), np.random.randn(40,N)
#run: allpairs_distances(X, Y)
#pythran export allpairs_distances(float64[][], float64[][])
import numpy as np
def allpairs_distances(X,Y):
return np.array([[np.sum( (x-y) ** 2) for x in X] for y in Y])

View File

@ -0,0 +1,12 @@
#setup: import numpy as np ; N = 50 ; X, Y = np.random.randn(50,N), np.random.randn(40,N)
#run: allpairs_distances_loops(X, Y)
#pythran export allpairs_distances_loops(float64[][], float64[][])
import numpy as np
def allpairs_distances_loops(X,Y):
result = np.zeros( (X.shape[0], Y.shape[0]), X.dtype)
for i in range(X.shape[0]):
for j in range(Y.shape[0]):
result[i,j] = np.sum( (X[i,:] - Y[j,:]) ** 2)
return result

View File

@ -0,0 +1,14 @@
#setup: N = 10000 ; import numpy as np ; t0, p0, t1, p1 = np.random.randn(N), np.random.randn(N), np.random.randn(N), np.random.randn(N)
#run: arc_distance(t0, p0, t1, p1)
#pythran export arc_distance(float64 [], float64[], float64[], float64[])
import numpy as np
def arc_distance(theta_1, phi_1,
theta_2, phi_2):
"""
Calculates the pairwise arc distance between all points in vector a and b.
"""
temp = np.sin((theta_2-theta_1)/2)**2+np.cos(theta_1)*np.cos(theta_2)*np.sin((phi_2-phi_1)/2)**2
distance_matrix = 2 * (np.arctan2(np.sqrt(temp),np.sqrt(1-temp)))
return distance_matrix

View File

@ -0,0 +1,14 @@
#setup: n=100 ; import numpy as np; db = np.array(np.random.randint(2, size=(n, 4)), dtype=bool)
#run: check_mask(db)
#from: http://stackoverflow.com/questions/34500913/numba-slower-for-numpy-bitwise-and-on-boolean-arrays
#pythran export check_mask(bool[][])
import numpy as np
def check_mask(db, mask=[1, 0, 1]):
out = np.zeros(db.shape[0],dtype=bool)
for idx, line in enumerate(db):
target, vector = line[0], line[1:]
if (mask == np.bitwise_and(mask, vector)).all():
if target == 1:
out[idx] = 1
return out

View File

@ -0,0 +1,27 @@
#setup: N = 10 ; import numpy as np ; x = np.tri(N,N)*0.5 ; w = np.tri(5,5)*0.25
#run: conv(x,w)
#pythran export conv(float[][], float[][])
import numpy as np
def clamp(i, offset, maxval):
j = max(0, i + offset)
return min(j, maxval)
def reflect(pos, offset, bound):
idx = pos+offset
return min(2*(bound-1)-idx,max(idx,-idx))
def conv(x, weights):
sx = x.shape
sw = weights.shape
result = np.zeros_like(x)
for i in range(sx[0]):
for j in range(sx[1]):
for ii in range(sw[0]):
for jj in range(sw[1]):
idx = clamp(i,ii-sw[0]//2,sw[0]), clamp(j,jj-sw[0]//2,sw[0])
result[i,j] += x[idx] * weights[ii,jj]
return result

View File

@ -0,0 +1,12 @@
#from: http://stackoverflow.com/questions/13815719/creating-grid-with-numpy-performance
#pythran export create_grid(float [])
#setup: import numpy as np ; N = 800 ; x = np.arange(0,1,1./N)
#run: create_grid(x)
import numpy as np
def create_grid(x):
N = x.shape[0]
z = np.zeros((N, N, 3))
z[:,:,0] = x.reshape(-1,1)
z[:,:,1] = x
fast_grid = z.reshape(N*N, 3)
return fast_grid

View File

@ -0,0 +1,9 @@
#from: http://stackoverflow.com/questions/20799403/improving-performance-of-cronbach-alpha-code-python-numpy
#pythran export cronbach(float [][])
#setup: import numpy as np ; N = 600 ; items = np.random.rand(N,N)
#run: cronbach(items)
def cronbach(itemscores):
itemvars = itemscores.var(axis=1, ddof=1)
tscores = itemscores.sum(axis=0)
nitems = len(itemscores)
return nitems / (nitems-1) * (1 - itemvars.sum() / tscores.var(ddof=1))

View File

@ -0,0 +1,19 @@
#setup: import numpy as np;lx,ly=(2**7,2**7);u=np.zeros([lx,ly],dtype=np.double);u[lx//2,ly//2]=1000.0;tempU=np.zeros([lx,ly],dtype=np.double)
#run: diffusion(u,tempU,100)
#pythran export diffusion(float [][], float [][], int)
import numpy as np
def diffusion(u, tempU, iterNum):
"""
Apply Numpy matrix for the Forward-Euler Approximation
"""
mu = .1
for n in range(iterNum):
tempU[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * (
u[2:, 1:-1] - 2 * u[1:-1, 1:-1] + u[0:-2, 1:-1] +
u[1:-1, 2:] - 2 * u[1:-1, 1:-1] + u[1:-1, 0:-2])
u[:, :] = tempU[:, :]
tempU[:, :] = 0.0

View File

@ -0,0 +1,11 @@
#setup: import numpy as np ; grid_shape = (512, 512) ; grid = np.zeros(grid_shape) ; block_low = int(grid_shape[0] * .4) ; block_high = int(grid_shape[0] * .5) ; grid[block_low:block_high, block_low:block_high] = 0.005
#run: evolve(grid, 0.1)
#from: High Performance Python by Micha Gorelick and Ian Ozsvald, http://shop.oreilly.com/product/0636920028963.do
#pythran export evolve(float64[][], float)
import numpy as np
def laplacian(grid):
return np.roll(grid, +1, 0) + np.roll(grid, -1, 0) + np.roll(grid, +1, 1) + np.roll(grid, -1, 1) - 4 * grid
def evolve(grid, dt, D=1):
return grid + dt * D * laplacian(grid)

View File

@ -0,0 +1,35 @@
#from: http://stackoverflow.com/questions/19367488/converting-function-to-numbapro-cuda
#setup: N = 10 ; import numpy ; a = numpy.random.rand(N,N)
#run: fdtd(a,10)
#pythran export fdtd(float[][], int)
import numpy as np
def fdtd(input_grid, steps):
grid = input_grid.copy()
old_grid = np.zeros_like(input_grid)
previous_grid = np.zeros_like(input_grid)
l_x = grid.shape[0]
l_y = grid.shape[1]
for i in range(steps):
np.copyto(previous_grid, old_grid)
np.copyto(old_grid, grid)
for x in range(l_x):
for y in range(l_y):
grid[x,y] = 0.0
if 0 < x+1 < l_x:
grid[x,y] += old_grid[x+1,y]
if 0 < x-1 < l_x:
grid[x,y] += old_grid[x-1,y]
if 0 < y+1 < l_y:
grid[x,y] += old_grid[x,y+1]
if 0 < y-1 < l_y:
grid[x,y] += old_grid[x,y-1]
grid[x,y] /= 2.0
grid[x,y] -= previous_grid[x,y]
return grid

View File

@ -0,0 +1,18 @@
#setup: N = 2**10 ; import numpy ; a = numpy.array(numpy.random.rand(N), dtype=complex)
#run: fft(a)
#pythran export fft(complex [])
import math, numpy as np
def fft(x):
N = x.shape[0]
if N == 1:
return np.array(x)
e=fft(x[::2])
o=fft(x[1::2])
M=N//2
l=[ e[k] + o[k]*math.e**(-2j*math.pi*k/N) for k in range(M) ]
r=[ e[k] - o[k]*math.e**(-2j*math.pi*k/N) for k in range(M) ]
return np.array(l+r)

View File

@ -0,0 +1,31 @@
#from http://stackoverflow.com/questions/26823312/numba-or-cython-acceleration-in-reaction-diffusion-algorithm
#setup: pass
#run: grayscott(40, 0.16, 0.08, 0.04, 0.06)
#pythran export grayscott(int, float, float, float, float)
import numpy as np
def grayscott(counts, Du, Dv, F, k):
n = 300
U = np.zeros((n+2,n+2), dtype=np.float32)
V = np.zeros((n+2,n+2), dtype=np.float32)
u, v = U[1:-1,1:-1], V[1:-1,1:-1]
r = 20
u[:] = 1.0
U[n//2-r:n//2+r,n//2-r:n//2+r] = 0.50
V[n//2-r:n//2+r,n//2-r:n//2+r] = 0.25
u += 0.15*np.random.random((n,n))
v += 0.15*np.random.random((n,n))
for i in range(counts):
Lu = ( U[0:-2,1:-1] +
U[1:-1,0:-2] - 4*U[1:-1,1:-1] + U[1:-1,2:] +
U[2: ,1:-1] )
Lv = ( V[0:-2,1:-1] +
V[1:-1,0:-2] - 4*V[1:-1,1:-1] + V[1:-1,2:] +
V[2: ,1:-1] )
uvv = u*v*v
u += Du*Lu - uvv + F*(1 - u)
v += Dv*Lv + uvv - (F + k)*v
return V

View File

@ -0,0 +1,11 @@
#from: http://stackoverflow.com/questions/4651683/numpy-grouping-using-itertools-groupby-performance
#setup: import numpy as np ; N = 350000 ; values = np.array(np.random.randint(0,3298,size=N),dtype='u4') ; values.sort()
#run: grouping(values)
#pythran export grouping(uint32 [])
def grouping(values):
import numpy as np
diff = np.concatenate(([1], np.diff(values)))
idx = np.concatenate((np.where(diff)[0], [len(values)]))
return values[idx[:-1]], np.diff(idx)

View File

@ -0,0 +1,56 @@
#from: http://continuum.io/blog/numba_performance
#setup: N = 10 ; import numpy as np ; image = np.random.rand(N, N, 3) ; state = np.zeros((N, N, 2)) ; state_next = np.empty_like(state) ; state[0, 0, 0] = state[0, 0, 1] = 1
#run: growcut(image, state, state_next, 2)
#pythran export growcut(float[][][], float[][][], float[][][], int)
import math
import numpy as np
def window_floor(idx, radius):
if radius > idx:
return 0
else:
return idx - radius
def window_ceil(idx, ceil, radius):
if idx + radius > ceil:
return ceil
else:
return idx + radius
def growcut(image, state, state_next, window_radius):
changes = 0
sqrt_3 = math.sqrt(3.0)
height = image.shape[0]
width = image.shape[1]
for j in range(width):
for i in range(height):
winning_colony = state[i, j, 0]
defense_strength = state[i, j, 1]
for jj in range(window_floor(j, window_radius),
window_ceil(j+1, width, window_radius)):
for ii in range(window_floor(i, window_radius),
window_ceil(i+1, height, window_radius)):
if (ii != i and jj != j):
d = image[i, j, 0] - image[ii, jj, 0]
s = d * d
for k in range(1, 3):
d = image[i, j, k] - image[ii, jj, k]
s += d * d
gval = 1.0 - math.sqrt(s)/sqrt_3
attack_strength = gval * state[ii, jj, 1]
if attack_strength > defense_strength:
defense_strength = attack_strength
winning_colony = state[ii, jj, 0]
changes += 1
state_next[i, j, 0] = winning_colony
state_next[i, j, 1] = defense_strength
return changes

View File

@ -0,0 +1,31 @@
#from: parakeet testbed
#setup: import numpy as np ; M, N = 512, 512 ; I = np.random.randn(M,N)
#run: harris(I)
#pythran export harris(float64[][])
import numpy as np
def harris(I):
m,n = I.shape
dx = (I[1:, :] - I[:m-1, :])[:, 1:]
dy = (I[:, 1:] - I[:, :n-1])[1:, :]
#
# At each point we build a matrix
# of derivative products
# M =
# | A = dx^2 C = dx * dy |
# | C = dy * dx B = dy * dy |
#
# and the score at that point is:
# det(M) - k*trace(M)^2
#
A = dx * dx
B = dy * dy
C = dx * dy
tr = A + B
det = A * B - C * C
k = 0.05
return det - k * tr * tr

View File

@ -0,0 +1,12 @@
#from: http://wiki.scipy.org/Cookbook/Theoretical_Ecology/Hastings_and_Powell
#setup: import numpy as np ; y = np.random.rand(3) ; args = np.random.rand(7)
#run: hasting(y, *args)
#pythran export hasting(float [], float, float, float, float, float, float, float)
import numpy as np
def hasting(y, t, a1, a2, b1, b2, d1, d2):
yprime = np.empty((3,))
yprime[0] = y[0] * (1. - y[0]) - a1*y[0]*y[1]/(1. + b1 * y[0])
yprime[1] = a1*y[0]*y[1] / (1. + b1 * y[0]) - a2 * y[1]*y[2] / (1. + b2 * y[1]) - d1 * y[1]
yprime[2] = a2*y[1]*y[2]/(1. + b2*y[1]) - d2*y[2]
return yprime

View File

@ -0,0 +1,15 @@
#setup: import numpy ; a = numpy.array([ [i/10., i/10., i/20.] for i in range(44440)], dtype=numpy.double)
#run: hyantes(0, 0, 90, 90, 1, 100, 80, 80, a)
#pythran export hyantes(float, float, float, float, float, float, int, int, float[][])
import numpy as np
def hyantes(xmin, ymin, xmax, ymax, step, range_, range_x, range_y, t):
X,Y = t.shape
pt = np.zeros((X,Y))
for i in range(X):
for j in range(Y):
for k in t:
tmp = 6368.* np.arccos( np.cos(xmin+step*i)*np.cos( k[0] ) * np.cos((ymin+step*j)-k[1])+ np.sin(xmin+step*i)*np.sin(k[0]))
if tmp < range_:
pt[i,j]+=k[2] / (1+tmp)
return pt

View File

@ -0,0 +1,27 @@
#setup: N=50
#run: julia(1., 1., N, 1.5, 10., 1e4)
#pythran export julia(float, float, int, float, float, float)
import numpy as np
from time import time
def kernel(zr, zi, cr, ci, lim, cutoff):
''' Computes the number of iterations `n` such that
|z_n| > `lim`, where `z_n = z_{n-1}**2 + c`.
'''
count = 0
while ((zr*zr + zi*zi) < (lim*lim)) and count < cutoff:
zr, zi = zr * zr - zi * zi + cr, 2 * zr * zi + ci
count += 1
return count
def julia(cr, ci, N, bound=1.5, lim=1000., cutoff=1e6):
''' Pure Python calculation of the Julia set for a given `c`. No NumPy
array operations are used.
'''
julia = np.empty((N, N), np.uint32)
grid_x = np.linspace(-bound, bound, N)
for i, x in enumerate(grid_x):
for j, y in enumerate(grid_x):
julia[i,j] = kernel(x, y, cr, ci, lim, cutoff)
return julia

View File

@ -0,0 +1,8 @@
#from: http://stackoverflow.com/questions/7741878/how-to-apply-numpy-linalg-norm-to-each-row-of-a-matrix/7741976#7741976
#setup: import numpy as np ; N = 1000; x = np.random.rand(N,N)
#run: l2norm(x)
#pythran export l2norm(float64[][])
import numpy as np
def l2norm(x):
return np.sqrt(np.sum(np.abs(x)**2, 1))

View File

@ -0,0 +1,27 @@
#from: https://github.com/iskandr/parakeet/blob/master/benchmarks/nd_local_maxima.py
#setup: import numpy as np ; shape = (3,4,3,2) ; x = np.arange(72, dtype=np.float64).reshape(*shape)
#run: local_maxima(x)
#pythran export local_maxima(float [][][][])
import numpy as np
def wrap(pos, offset, bound):
return ( pos + offset ) % bound
def clamp(pos, offset, bound):
return min(bound-1,max(0,pos+offset))
def reflect(pos, offset, bound):
idx = pos+offset
return min(2*(bound-1)-idx,max(idx,-idx))
def local_maxima(data, mode=wrap):
wsize = data.shape
result = np.ones(data.shape, bool)
for pos in np.ndindex(data.shape):
myval = data[pos]
for offset in np.ndindex(wsize):
neighbor_idx = tuple(mode(p, o-w//2, w) for (p, o, w) in zip(pos, offset, wsize))
result[pos] &= (data[neighbor_idx] <= myval)
return result

View File

@ -0,0 +1,11 @@
#setup: import numpy as np ; N = 100000 ; a = np.random.random(N); b = 0.1; c =1.1
#run: log_likelihood(a, b, c)
#from: http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html
import numpy
#pythran export log_likelihood(float64[], float64, float64)
def log_likelihood(data, mean, sigma):
s = (data - mean) ** 2 / (2 * (sigma ** 2))
pdfs = numpy.exp(- s)
pdfs /= numpy.sqrt(2 * numpy.pi) * sigma
return numpy.log(pdfs).sum()

View File

@ -0,0 +1,17 @@
#setup: import numpy as np ; N = 500000 ; X, Y = np.random.rand(N), np.random.rand(N)
#run: lstsqr(X, Y)
#from: http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb
#pythran export lstsqr(float[], float[])
import numpy as np
def lstsqr(x, y):
""" Computes the least-squares solution to a linear matrix equation. """
x_avg = np.average(x)
y_avg = np.average(y)
dx = x - x_avg
dy = y - y_avg
var_x = np.sum(dx**2)
cov_xy = np.sum(dx * (y - y_avg))
slope = cov_xy / var_x
y_interc = y_avg - slope*x_avg
return (slope, y_interc)

View File

@ -0,0 +1,32 @@
#setup: import numpy as np; image = np.zeros((64, 32), dtype = np.uint8)
#run: mandel(-2.0, 1.0, -1.0, 1.0, image, 20)
#pythran export mandel(float, float, float, float, uint8[][], int)
def kernel(x, y, max_iters):
"""
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.
"""
c = complex(x, y)
z = 0.0j
for i in range(max_iters):
z = z*z + c
if (z.real*z.real + z.imag*z.imag) >= 4:
return i
return max_iters
def mandel(min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[1]
pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range(width):
real = min_x + x * pixel_size_x
for y in range(height):
imag = min_y + y * pixel_size_y
color = kernel(real, imag, iters)
image[y, x] = color

View File

@ -0,0 +1,16 @@
#from http://stackoverflow.com/questions/77999777799977/numpy-vs-cython-speed
#pythran export multiple_sum(float[][])
#setup: import numpy as np ; r = np.random.rand(100,100)
#run: multiple_sum(r)
import numpy as np
def multiple_sum(array):
rows = array.shape[0]
cols = array.shape[1]
out = np.zeros((rows, cols))
for row in range(0, rows):
out[row, :] = np.sum(array - array[row, :], 0)
return out

View File

@ -0,0 +1,18 @@
#from: http://jakevdp.github.com/blog/2012/08/24/numba-vs-cython/
#setup: import numpy as np ; X = np.linspace(0,10,200).reshape(20,10)
#run: pairwise(X)
#pythran export pairwise(float [][])
import numpy as np
def pairwise(X):
M, N = X.shape
D = np.empty((M,M))
for i in range(M):
for j in range(M):
d = 0.0
for k in range(N):
tmp = X[i,k] - X[j,k]
d += tmp * tmp
D[i,j] = np.sqrt(d)
return D

View File

@ -0,0 +1,36 @@
#setup: import numpy as np ; N = 20 ; x = y = z = np.arange(0., N, 0.1) ; L = 4 ; periodic = True
#run: periodic_dist(x, x, x, L,periodic, periodic, periodic)
#pythran export periodic_dist(float [], float[], float[], int, bool, bool, bool)
import numpy as np
def periodic_dist(x, y, z, L, periodicX, periodicY, periodicZ):
" ""Computes distances between all particles and places the result in a matrix such that the ij th matrix entry corresponds to the distance between particle i and j"" "
N = len(x)
xtemp = np.tile(x,(N,1))
dx = xtemp - xtemp.T
ytemp = np.tile(y,(N,1))
dy = ytemp - ytemp.T
ztemp = np.tile(z,(N,1))
dz = ztemp - ztemp.T
# Particles 'feel' each other across the periodic boundaries
if periodicX:
dx[dx>L/2]=dx[dx > L/2]-L
dx[dx<-L/2]=dx[dx < -L/2]+L
if periodicY:
dy[dy>L/2]=dy[dy>L/2]-L
dy[dy<-L/2]=dy[dy<-L/2]+L
if periodicZ:
dz[dz>L/2]=dz[dz>L/2]-L
dz[dz<-L/2]=dz[dz<-L/2]+L
# Total Distances
d = np.sqrt(dx**2+dy**2+dz**2)
# Mark zero entries with negative 1 to avoid divergences
d[d==0] = -1
return d, dx, dy, dz

View File

@ -0,0 +1,13 @@
#from: http://stackoverflow.com/questions/14553331/how-to-improve-numpy-performance-in-this-short-code
#pythran export repeating(float[], int)
#setup: import numpy as np ; a = np.random.rand(10000)
#run: repeating(a, 20)
import numpy as np
def repeating(x, nvar_y):
nvar_x = x.shape[0]
y = np.empty(nvar_x*(1+nvar_y))
y[0:nvar_x] = x[0:nvar_x]
y[nvar_x:] = np.repeat(x,nvar_y)
return y

View File

@ -0,0 +1,7 @@
#from: http://stackoverflow.com/questions/16541618/perform-a-reverse-cumulative-sum-on-a-numpy-array
#pythran export reverse_cumsum(float[])
#setup: import numpy as np ; r = np.random.rand(1000000)
#run: reverse_cumsum(r)
import numpy as np
def reverse_cumsum(x):
return np.cumsum(x[::-1])[::-1]

View File

@ -0,0 +1,10 @@
#setup: import numpy as np; r = np.arange(1000000, dtype=float)
#run: rosen(r)
import numpy as np
#pythran export rosen(float[])
def rosen(x):
t0 = 100 * (x[1:] - x[:-1] ** 2) ** 2
t1 = (1 - x[:-1]) ** 2
return np.sum(t0 + t1)

View File

@ -0,0 +1,17 @@
#from: https://groups.google.com/forum/#!topic/parakeet-python/p-flp2kdE4U
#setup: import numpy as np ;d = 10 ;re = 5 ;params = (d, re, np.ones((2*d, d+1, re)), np.ones((d, d+1, re)), np.ones((d, 2*d)), np.ones((d, 2*d)), np.ones((d+1, re, d)), np.ones((d+1, re, d)), 1)
#run: slowparts(*params)
#pythran export slowparts(int, int, float [][][], float [][][], float [][], float [][], float [][][], float [][][], int)
from numpy import zeros, power, tanh
def slowparts(d, re, preDz, preWz, SRW, RSW, yxV, xyU, resid):
""" computes the linear algebra intensive part of the gradients of the grae
"""
fprime = lambda x: 1 - power(tanh(x), 2)
partialDU = zeros((d+1, re, 2*d, d))
for k in range(2*d):
for i in range(d):
partialDU[:,:,k,i] = fprime(preDz[k]) * fprime(preWz[i]) * (SRW[i,k] + RSW[i,k]) * yxV[:,:,i]
return partialDU

View File

@ -0,0 +1,17 @@
#setup: import numpy as np ; N = 1000 ; a = np.arange(0,1,N)
#run: smoothing(a, .4)
#from: http://www.parakeetpython.com/
#pythran export smoothing(float[], float)
def smoothing(x, alpha):
"""
Exponential smoothing of a time series
For x = 10**6 floats
- Python runtime: 9 seconds
- Parakeet runtime: .01 seconds
"""
s = x.copy()
for i in range(1, len(x)):
s[i] = alpha * x[i] + (1 - alpha) * s[i-1]
return s

View File

@ -0,0 +1,10 @@
#from: http://stackoverflow.com/questions/2196693/improving-numpy-performance
#pythran export specialconvolve(uint32 [][])
#setup: import numpy as np ; r = np.arange(100*10000, dtype=np.uint32).reshape(1000,1000)
#run: specialconvolve(r)
def specialconvolve(a):
# sorry, you must pad the input yourself
rowconvol = a[1:-1,:] + a[:-2,:] + a[2:,:]
colconvol = rowconvol[:,1:-1] + rowconvol[:,:-2] + rowconvol[:,2:] - 9*a[1:-1,1:-1]
return colconvol

View File

@ -0,0 +1,8 @@
#from: http://stackoverflow.com/questions/17112550/python-and-numba-for-vectorized-functions
#setup: import numpy as np ; N = 100000 ; a, b, c = np.random.rand(N), np.random.rand(N), np.random.rand(N)
#run: vibr_energy(a, b, c)
#pythran export vibr_energy(float64[], float64[], float64[])
import numpy
def vibr_energy(harmonic, anharmonic, i):
return numpy.exp(-harmonic * i - anharmonic * (i ** 2))

View File

@ -0,0 +1,54 @@
#from https://github.com/sklam/numba-example-wavephysics
#setup: N=100
#run: wave(N)
import numpy as np
from math import ceil
def physics(masspoints, dt, plunk, which):
ppos = masspoints[1]
cpos = masspoints[0]
N = cpos.shape[0]
# apply hooke's law
HOOKE_K = 2100000.
DAMPING = 0.0001
MASS = .01
force = np.zeros((N, 2))
for i in range(1, N):
dx, dy = cpos[i] - cpos[i - 1]
dist = np.sqrt(dx**2 + dy**2)
assert dist != 0
fmag = -HOOKE_K * dist
cosine = dx / dist
sine = dy / dist
fvec = np.array([fmag * cosine, fmag * sine])
force[i - 1] -= fvec
force[i] += fvec
force[0] = force[-1] = 0, 0
force[which][1] += plunk
accel = force / MASS
# verlet integration
npos = (2 - DAMPING) * cpos - (1 - DAMPING) * ppos + accel * (dt**2)
masspoints[1] = cpos
masspoints[0] = npos
#pythran export wave(int)
def wave(PARTICLE_COUNT):
SUBDIVISION = 300
FRAMERATE = 60
count = PARTICLE_COUNT
width, height = 1200, 400
masspoints = np.empty((2, count, 2), np.float64)
initpos = np.zeros(count, np.float64)
for i in range(1, count):
initpos[i] = initpos[i - 1] + float(width) / count
masspoints[:, :, 0] = initpos
masspoints[:, :, 1] = height / 2
f = 15
plunk_pos = count // 2
physics( masspoints, 1./ (SUBDIVISION * FRAMERATE), f, plunk_pos)
return masspoints[0, count // 2]

View File

@ -0,0 +1,18 @@
#from: http://stackoverflow.com/questions/19277244/fast-weighted-euclidean-distance-between-points-in-arrays/19277334#19277334
#setup: import numpy as np ; N = 10 ; A = np.random.rand(N,N) ; B = np.random.rand(N,N) ; W = np.random.rand(N,N)
#run: wdist(A,B,W)
#pythran export wdist(float64 [][], float64 [][], float64[][])
import numpy as np
def wdist(A, B, W):
k,m = A.shape
_,n = B.shape
D = np.zeros((m, n))
for ii in range(m):
for jj in range(n):
wdiff = (A[:,ii] - B[:,jj]) / W[:,ii]
D[ii,jj] = np.sqrt((wdiff**2).sum())
return D

View File

@ -0,0 +1,29 @@
import matplotlib.pyplot as plt
import numpy as np
import json
import sys
plt.rcdefaults()
fig, ax = plt.subplots(constrained_layout=True, figsize=(8, 8))
with open(sys.argv[-2]) as fp:
content = json.load(fp)
results = []
for k, v in content.items():
results.append((k, v[1] / v[0]))
results.sort(key=lambda x: x[1], reverse=True)
names = [x[0] for x in results]
values = [x[1] for x in results]
y_pos = np.arange(len(results))
ax.barh(y_pos, values, align='center')
ax.set_yticks(y_pos)
ax.set_yticklabels(names)
ax.invert_yaxis()
ax.set_xlabel('Slowdown factor')
ax.set_title('Native vs. WebAssembly Python benchmarks')
ax.grid()
plt.savefig(sys.argv[-1])

View File

@ -77,7 +77,7 @@ $(HOSTDIR)/setup.py: $(ZIPFILE)
$(HOSTBUILD)/lib.$(PLATFORMSLUG)/numpy/__init__.py: $(ROOT)/.patched
( \
cd $(HOSTDIR); \
$(HOSTPYTHON) setup.py build \
$(HOSTPYTHON) setup.py install \
)

279
src/pystone.py Executable file
View File

@ -0,0 +1,279 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
"PYSTONE" Benchmark Program
Version: Python/1.1 (corresponds to C/1.1 plus 2 Pystone fixes)
Author: Reinhold P. Weicker, CACM Vol 27, No 10, 10/84 pg. 1013.
Translated from ADA to C by Rick Richardson.
Every method to preserve ADA-likeness has been used,
at the expense of C-ness.
Translated from C to Python by Guido van Rossum.
Version History:
Inofficial version 1.1.1 by Chris Arndt:
- Make it run under Python 2 and 3 by using
"from __future__ import print_function".
- Change interpreter name in shebang line to plain
"python".
- Add source code encoding declaration.
Version 1.1 corrects two bugs in version 1.0:
First, it leaked memory: in Proc1(), NextRecord ends
up having a pointer to itself. I have corrected this
by zapping NextRecord.PtrComp at the end of Proc1().
Second, Proc3() used the operator != to compare a
record to None. This is rather inefficient and not
true to the intention of the original benchmark (where
a pointer comparison to None is intended; the !=
operator attempts to find a method __cmp__ to do value
comparison of the record). Version 1.1 runs 5-10
percent faster than version 1.0, so benchmark figures
of different versions can't be compared directly.
"""
from __future__ import print_function
LOOPS = 50000
from time import clock
__version__ = "1.1.1"
[Ident1, Ident2, Ident3, Ident4, Ident5] = range(1, 6)
class Record:
def __init__(self, PtrComp = None, Discr = 0, EnumComp = 0,
IntComp = 0, StringComp = 0):
self.PtrComp = PtrComp
self.Discr = Discr
self.EnumComp = EnumComp
self.IntComp = IntComp
self.StringComp = StringComp
def copy(self):
return Record(self.PtrComp, self.Discr, self.EnumComp,
self.IntComp, self.StringComp)
TRUE = 1
FALSE = 0
def main(loops=LOOPS):
benchtime, stones = pystones(loops)
print("%g" % benchtime)
def pystones(loops=LOOPS):
return Proc0(loops)
IntGlob = 0
BoolGlob = FALSE
Char1Glob = '\0'
Char2Glob = '\0'
Array1Glob = [0]*51
Array2Glob = [x[:] for x in [Array1Glob]*51]
PtrGlb = None
PtrGlbNext = None
def Proc0(loops=LOOPS):
global IntGlob
global BoolGlob
global Char1Glob
global Char2Glob
global Array1Glob
global Array2Glob
global PtrGlb
global PtrGlbNext
starttime = clock()
for i in range(loops):
pass
nulltime = clock() - starttime
PtrGlbNext = Record()
PtrGlb = Record()
PtrGlb.PtrComp = PtrGlbNext
PtrGlb.Discr = Ident1
PtrGlb.EnumComp = Ident3
PtrGlb.IntComp = 40
PtrGlb.StringComp = "DHRYSTONE PROGRAM, SOME STRING"
String1Loc = "DHRYSTONE PROGRAM, 1'ST STRING"
Array2Glob[8][7] = 10
starttime = clock()
for i in range(loops):
Proc5()
Proc4()
IntLoc1 = 2
IntLoc2 = 3
String2Loc = "DHRYSTONE PROGRAM, 2'ND STRING"
EnumLoc = Ident2
BoolGlob = not Func2(String1Loc, String2Loc)
while IntLoc1 < IntLoc2:
IntLoc3 = 5 * IntLoc1 - IntLoc2
IntLoc3 = Proc7(IntLoc1, IntLoc2)
IntLoc1 = IntLoc1 + 1
Proc8(Array1Glob, Array2Glob, IntLoc1, IntLoc3)
PtrGlb = Proc1(PtrGlb)
CharIndex = 'A'
while CharIndex <= Char2Glob:
if EnumLoc == Func1(CharIndex, 'C'):
EnumLoc = Proc6(Ident1)
CharIndex = chr(ord(CharIndex)+1)
IntLoc3 = IntLoc2 * IntLoc1
IntLoc2 = IntLoc3 / IntLoc1
IntLoc2 = 7 * (IntLoc3 - IntLoc2) - IntLoc1
IntLoc1 = Proc2(IntLoc1)
benchtime = clock() - starttime - nulltime
if benchtime == 0.0:
loopsPerBenchtime = 0.0
else:
loopsPerBenchtime = (loops / benchtime)
return benchtime, loopsPerBenchtime
def Proc1(PtrParIn):
PtrParIn.PtrComp = NextRecord = PtrGlb.copy()
PtrParIn.IntComp = 5
NextRecord.IntComp = PtrParIn.IntComp
NextRecord.PtrComp = PtrParIn.PtrComp
NextRecord.PtrComp = Proc3(NextRecord.PtrComp)
if NextRecord.Discr == Ident1:
NextRecord.IntComp = 6
NextRecord.EnumComp = Proc6(PtrParIn.EnumComp)
NextRecord.PtrComp = PtrGlb.PtrComp
NextRecord.IntComp = Proc7(NextRecord.IntComp, 10)
else:
PtrParIn = NextRecord.copy()
NextRecord.PtrComp = None
return PtrParIn
def Proc2(IntParIO):
IntLoc = IntParIO + 10
while 1:
if Char1Glob == 'A':
IntLoc = IntLoc - 1
IntParIO = IntLoc - IntGlob
EnumLoc = Ident1
if EnumLoc == Ident1:
break
return IntParIO
def Proc3(PtrParOut):
global IntGlob
if PtrGlb is not None:
PtrParOut = PtrGlb.PtrComp
else:
IntGlob = 100
PtrGlb.IntComp = Proc7(10, IntGlob)
return PtrParOut
def Proc4():
global Char2Glob
BoolLoc = Char1Glob == 'A'
BoolLoc = BoolLoc or BoolGlob
Char2Glob = 'B'
def Proc5():
global Char1Glob
global BoolGlob
Char1Glob = 'A'
BoolGlob = FALSE
def Proc6(EnumParIn):
EnumParOut = EnumParIn
if not Func3(EnumParIn):
EnumParOut = Ident4
if EnumParIn == Ident1:
EnumParOut = Ident1
elif EnumParIn == Ident2:
if IntGlob > 100:
EnumParOut = Ident1
else:
EnumParOut = Ident4
elif EnumParIn == Ident3:
EnumParOut = Ident2
elif EnumParIn == Ident4:
pass
elif EnumParIn == Ident5:
EnumParOut = Ident3
return EnumParOut
def Proc7(IntParI1, IntParI2):
IntLoc = IntParI1 + 2
IntParOut = IntParI2 + IntLoc
return IntParOut
def Proc8(Array1Par, Array2Par, IntParI1, IntParI2):
global IntGlob
IntLoc = IntParI1 + 5
Array1Par[IntLoc] = IntParI2
Array1Par[IntLoc+1] = Array1Par[IntLoc]
Array1Par[IntLoc+30] = IntLoc
for IntIndex in range(IntLoc, IntLoc+2):
Array2Par[IntLoc][IntIndex] = IntLoc
Array2Par[IntLoc][IntLoc-1] = Array2Par[IntLoc][IntLoc-1] + 1
Array2Par[IntLoc+20][IntLoc] = Array1Par[IntLoc]
IntGlob = 5
def Func1(CharPar1, CharPar2):
CharLoc1 = CharPar1
CharLoc2 = CharLoc1
if CharLoc2 != CharPar2:
return Ident1
else:
return Ident2
def Func2(StrParI1, StrParI2):
IntLoc = 1
while IntLoc <= 1:
if Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]) == Ident1:
CharLoc = 'A'
IntLoc = IntLoc + 1
if CharLoc >= 'W' and CharLoc <= 'Z':
IntLoc = 7
if CharLoc == 'X':
return TRUE
else:
if StrParI1 > StrParI2:
IntLoc = IntLoc + 7
return TRUE
else:
return FALSE
def Func3(EnumParIn):
EnumLoc = EnumParIn
if EnumLoc == Ident3: return TRUE
return FALSE
if __name__ == '__main__':
import sys
def error(msg):
print(msg, end=' ', file=sys.stderr)
print("usage: %s [number_of_loops]" % sys.argv[0], file=sys.stderr)
sys.exit(100)
nargs = len(sys.argv) - 1
if nargs > 1:
error("%d arguments are too many;" % nargs)
elif nargs == 1:
try: loops = int(sys.argv[1])
except ValueError:
error("Invalid argument %r;" % sys.argv[1])
else:
loops = LOOPS
main(loops)

View File

@ -4,7 +4,10 @@ Various common utilities for testing.
import pathlib
import pytest
try:
import pytest
except ImportError:
pytest = None
TEST_PATH = pathlib.Path(__file__).parents[0].resolve()
@ -47,8 +50,9 @@ class SeleniumWrapper:
yield self.driver.current_url
@pytest.fixture
def selenium():
selenium = SeleniumWrapper()
yield selenium
selenium.driver.quit()
if pytest is not None:
@pytest.fixture
def selenium():
selenium = SeleniumWrapper()
yield selenium
selenium.driver.quit()