diff --git a/Makefile b/Makefile index 0762c2fa2..b5eacec38 100644 --- a/Makefile +++ b/Makefile @@ -6,6 +6,7 @@ PYMINOR=$(basename $(PYVERSION)) CPYTHONROOT=cpython CPYTHONLIB=$(CPYTHONROOT)/installs/python-$(PYVERSION)/lib/python$(PYMINOR) CPYTHONINC=$(CPYTHONROOT)/installs/python-$(PYVERSION)/include/python$(PYMINOR) +HOSTPYTHON=$(CPYTHONROOT)/build/$(PYVERSION)/host/bin/python3 CC=emcc CXX=em++ @@ -62,6 +63,11 @@ test: all build/test.html py.test test +benchmark: all build/test.html + python benchmark/benchmark.py $(HOSTPYTHON) $(BUILD)/benchmarks.json + python benchmark/plot_benchmark.py benchmarks.json $(BUILD)/benchmarks.png + + clean: rm -fr root rm build/* @@ -88,6 +94,7 @@ root/.built: \ cp src/lazy_import.py $(SITEPACKAGES) cp src/sitecustomize.py $(SITEPACKAGES) cp src/webbrowser.py root/lib/python$(PYMINOR) + cp src/pystone.py root/lib/python$(PYMINOR) ( \ cd root/lib/python$(PYMINOR); \ rm -fr `cat ../../../remove_modules.txt`; \ diff --git a/benchmark/benchmark.py b/benchmark/benchmark.py new file mode 100644 index 000000000..ec6203c94 --- /dev/null +++ b/benchmark/benchmark.py @@ -0,0 +1,94 @@ +import json +import os +import re +import subprocess +import sys + +sys.path.insert(0, os.path.abspath( + os.path.join(os.path.dirname(__file__), '..', 'test'))) +import conftest + + +SKIP = set(['fft', 'hyantes']) + + +def run_native(hostpython, code): + output = subprocess.check_output( + [os.path.abspath(hostpython), '-c', code], + cwd=os.path.dirname(__file__), + env={ + 'PYTHONPATH': + os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src'))} + ) + return float(output.strip().split()[-1]) + + +def run_wasm(code): + s = conftest.SeleniumWrapper() + s.run(code) + runtime = float(s.logs[-1]) + s.driver.quit() + return runtime + + +def run_both(hostpython, code): + a = run_native(hostpython, code) + print(a) + b = run_wasm(code) + print(b) + result = (a, b) + return result + + +def get_pystone_benchmarks(): + yield 'pystone', ( + "import pystone\n" + "pystone.main(pystone.LOOPS)\n" + ) + + +def parse_numpy_benchmark(filename): + lines = [] + with open(filename) as fp: + for line in fp: + m = re.match('^#(setup|run): (.*)$', line) + if m: + line = '{} = {!r}\n'.format(m.group(1), m.group(2)) + lines.append(line) + return ''.join(lines) + + +def get_numpy_benchmarks(): + root = '../numpy-benchmarks/benchmarks' + for filename in os.listdir(root): + name = os.path.splitext(filename)[0] + if name in SKIP: + continue + content = parse_numpy_benchmark(os.path.join(root, filename)) + content += ( + "setup = setup + '\\nfrom __main__ import {}'\n" + "from timeit import Timer\n" + "t = Timer(run, setup)\n" + "r = t.repeat(11, 40)\n" + "import numpy as np\n" + "print(np.mean(r))\n".format(name)) + yield name, content + + +def get_benchmarks(): + yield from get_pystone_benchmarks() + yield from get_numpy_benchmarks() + + +def main(hostpython): + results = {} + for k, v in get_benchmarks(): + print(k) + results[k] = run_both(hostpython, v) + return results + + +if __name__ == '__main__': + results = main(sys.argv[-2]) + with open(sys.argv[-1], 'w') as fp: + json.dump(results, fp) diff --git a/benchmark/benchmarks/README.md b/benchmark/benchmarks/README.md new file mode 100644 index 000000000..ce37afba5 --- /dev/null +++ b/benchmark/benchmarks/README.md @@ -0,0 +1 @@ +From https://github.com/serge-sans-paille/numpy-benchmarks diff --git a/benchmark/benchmarks/allpairs_distances.py b/benchmark/benchmarks/allpairs_distances.py new file mode 100644 index 000000000..122bab793 --- /dev/null +++ b/benchmark/benchmarks/allpairs_distances.py @@ -0,0 +1,8 @@ +#setup: import numpy as np ; N = 50 ; X, Y = np.random.randn(100,N), np.random.randn(40,N) +#run: allpairs_distances(X, Y) + +#pythran export allpairs_distances(float64[][], float64[][]) +import numpy as np + +def allpairs_distances(X,Y): + return np.array([[np.sum( (x-y) ** 2) for x in X] for y in Y]) diff --git a/benchmark/benchmarks/allpairs_distances_loops.py b/benchmark/benchmarks/allpairs_distances_loops.py new file mode 100644 index 000000000..d5355068e --- /dev/null +++ b/benchmark/benchmarks/allpairs_distances_loops.py @@ -0,0 +1,12 @@ +#setup: import numpy as np ; N = 50 ; X, Y = np.random.randn(50,N), np.random.randn(40,N) +#run: allpairs_distances_loops(X, Y) + +#pythran export allpairs_distances_loops(float64[][], float64[][]) +import numpy as np + +def allpairs_distances_loops(X,Y): + result = np.zeros( (X.shape[0], Y.shape[0]), X.dtype) + for i in range(X.shape[0]): + for j in range(Y.shape[0]): + result[i,j] = np.sum( (X[i,:] - Y[j,:]) ** 2) + return result diff --git a/benchmark/benchmarks/arc_distance.py b/benchmark/benchmarks/arc_distance.py new file mode 100644 index 000000000..f6f0945c5 --- /dev/null +++ b/benchmark/benchmarks/arc_distance.py @@ -0,0 +1,14 @@ +#setup: N = 10000 ; import numpy as np ; t0, p0, t1, p1 = np.random.randn(N), np.random.randn(N), np.random.randn(N), np.random.randn(N) +#run: arc_distance(t0, p0, t1, p1) + +#pythran export arc_distance(float64 [], float64[], float64[], float64[]) + +import numpy as np +def arc_distance(theta_1, phi_1, + theta_2, phi_2): + """ + Calculates the pairwise arc distance between all points in vector a and b. + """ + temp = np.sin((theta_2-theta_1)/2)**2+np.cos(theta_1)*np.cos(theta_2)*np.sin((phi_2-phi_1)/2)**2 + distance_matrix = 2 * (np.arctan2(np.sqrt(temp),np.sqrt(1-temp))) + return distance_matrix diff --git a/benchmark/benchmarks/check_mask.py b/benchmark/benchmarks/check_mask.py new file mode 100644 index 000000000..0d7a37d28 --- /dev/null +++ b/benchmark/benchmarks/check_mask.py @@ -0,0 +1,14 @@ +#setup: n=100 ; import numpy as np; db = np.array(np.random.randint(2, size=(n, 4)), dtype=bool) +#run: check_mask(db) +#from: http://stackoverflow.com/questions/34500913/numba-slower-for-numpy-bitwise-and-on-boolean-arrays + +#pythran export check_mask(bool[][]) +import numpy as np +def check_mask(db, mask=[1, 0, 1]): + out = np.zeros(db.shape[0],dtype=bool) + for idx, line in enumerate(db): + target, vector = line[0], line[1:] + if (mask == np.bitwise_and(mask, vector)).all(): + if target == 1: + out[idx] = 1 + return out diff --git a/benchmark/benchmarks/conv.py b/benchmark/benchmarks/conv.py new file mode 100644 index 000000000..62cb90031 --- /dev/null +++ b/benchmark/benchmarks/conv.py @@ -0,0 +1,27 @@ +#setup: N = 10 ; import numpy as np ; x = np.tri(N,N)*0.5 ; w = np.tri(5,5)*0.25 +#run: conv(x,w) + +#pythran export conv(float[][], float[][]) +import numpy as np + +def clamp(i, offset, maxval): + j = max(0, i + offset) + return min(j, maxval) + + +def reflect(pos, offset, bound): + idx = pos+offset + return min(2*(bound-1)-idx,max(idx,-idx)) + + +def conv(x, weights): + sx = x.shape + sw = weights.shape + result = np.zeros_like(x) + for i in range(sx[0]): + for j in range(sx[1]): + for ii in range(sw[0]): + for jj in range(sw[1]): + idx = clamp(i,ii-sw[0]//2,sw[0]), clamp(j,jj-sw[0]//2,sw[0]) + result[i,j] += x[idx] * weights[ii,jj] + return result diff --git a/benchmark/benchmarks/create_grid.py b/benchmark/benchmarks/create_grid.py new file mode 100644 index 000000000..98b931486 --- /dev/null +++ b/benchmark/benchmarks/create_grid.py @@ -0,0 +1,12 @@ +#from: http://stackoverflow.com/questions/13815719/creating-grid-with-numpy-performance +#pythran export create_grid(float []) +#setup: import numpy as np ; N = 800 ; x = np.arange(0,1,1./N) +#run: create_grid(x) +import numpy as np +def create_grid(x): + N = x.shape[0] + z = np.zeros((N, N, 3)) + z[:,:,0] = x.reshape(-1,1) + z[:,:,1] = x + fast_grid = z.reshape(N*N, 3) + return fast_grid diff --git a/benchmark/benchmarks/cronbach.py b/benchmark/benchmarks/cronbach.py new file mode 100644 index 000000000..cb303bc54 --- /dev/null +++ b/benchmark/benchmarks/cronbach.py @@ -0,0 +1,9 @@ +#from: http://stackoverflow.com/questions/20799403/improving-performance-of-cronbach-alpha-code-python-numpy +#pythran export cronbach(float [][]) +#setup: import numpy as np ; N = 600 ; items = np.random.rand(N,N) +#run: cronbach(items) +def cronbach(itemscores): + itemvars = itemscores.var(axis=1, ddof=1) + tscores = itemscores.sum(axis=0) + nitems = len(itemscores) + return nitems / (nitems-1) * (1 - itemvars.sum() / tscores.var(ddof=1)) diff --git a/benchmark/benchmarks/diffusion.py b/benchmark/benchmarks/diffusion.py new file mode 100644 index 000000000..07845b406 --- /dev/null +++ b/benchmark/benchmarks/diffusion.py @@ -0,0 +1,19 @@ +#setup: import numpy as np;lx,ly=(2**7,2**7);u=np.zeros([lx,ly],dtype=np.double);u[lx//2,ly//2]=1000.0;tempU=np.zeros([lx,ly],dtype=np.double) +#run: diffusion(u,tempU,100) + +#pythran export diffusion(float [][], float [][], int) +import numpy as np + + +def diffusion(u, tempU, iterNum): + """ + Apply Numpy matrix for the Forward-Euler Approximation + """ + mu = .1 + + for n in range(iterNum): + tempU[1:-1, 1:-1] = u[1:-1, 1:-1] + mu * ( + u[2:, 1:-1] - 2 * u[1:-1, 1:-1] + u[0:-2, 1:-1] + + u[1:-1, 2:] - 2 * u[1:-1, 1:-1] + u[1:-1, 0:-2]) + u[:, :] = tempU[:, :] + tempU[:, :] = 0.0 diff --git a/benchmark/benchmarks/evolve.py b/benchmark/benchmarks/evolve.py new file mode 100644 index 000000000..79a8fcd4e --- /dev/null +++ b/benchmark/benchmarks/evolve.py @@ -0,0 +1,11 @@ +#setup: import numpy as np ; grid_shape = (512, 512) ; grid = np.zeros(grid_shape) ; block_low = int(grid_shape[0] * .4) ; block_high = int(grid_shape[0] * .5) ; grid[block_low:block_high, block_low:block_high] = 0.005 +#run: evolve(grid, 0.1) +#from: High Performance Python by Micha Gorelick and Ian Ozsvald, http://shop.oreilly.com/product/0636920028963.do + +#pythran export evolve(float64[][], float) +import numpy as np +def laplacian(grid): + return np.roll(grid, +1, 0) + np.roll(grid, -1, 0) + np.roll(grid, +1, 1) + np.roll(grid, -1, 1) - 4 * grid + +def evolve(grid, dt, D=1): + return grid + dt * D * laplacian(grid) diff --git a/benchmark/benchmarks/fdtd.py b/benchmark/benchmarks/fdtd.py new file mode 100644 index 000000000..5bf65d250 --- /dev/null +++ b/benchmark/benchmarks/fdtd.py @@ -0,0 +1,35 @@ +#from: http://stackoverflow.com/questions/19367488/converting-function-to-numbapro-cuda +#setup: N = 10 ; import numpy ; a = numpy.random.rand(N,N) +#run: fdtd(a,10) + +#pythran export fdtd(float[][], int) +import numpy as np + +def fdtd(input_grid, steps): + grid = input_grid.copy() + old_grid = np.zeros_like(input_grid) + previous_grid = np.zeros_like(input_grid) + + l_x = grid.shape[0] + l_y = grid.shape[1] + + for i in range(steps): + np.copyto(previous_grid, old_grid) + np.copyto(old_grid, grid) + + for x in range(l_x): + for y in range(l_y): + grid[x,y] = 0.0 + if 0 < x+1 < l_x: + grid[x,y] += old_grid[x+1,y] + if 0 < x-1 < l_x: + grid[x,y] += old_grid[x-1,y] + if 0 < y+1 < l_y: + grid[x,y] += old_grid[x,y+1] + if 0 < y-1 < l_y: + grid[x,y] += old_grid[x,y-1] + + grid[x,y] /= 2.0 + grid[x,y] -= previous_grid[x,y] + + return grid diff --git a/benchmark/benchmarks/fft.py b/benchmark/benchmarks/fft.py new file mode 100644 index 000000000..e80e07b19 --- /dev/null +++ b/benchmark/benchmarks/fft.py @@ -0,0 +1,18 @@ +#setup: N = 2**10 ; import numpy ; a = numpy.array(numpy.random.rand(N), dtype=complex) +#run: fft(a) + +#pythran export fft(complex []) + +import math, numpy as np + +def fft(x): + N = x.shape[0] + if N == 1: + return np.array(x) + e=fft(x[::2]) + o=fft(x[1::2]) + M=N//2 + l=[ e[k] + o[k]*math.e**(-2j*math.pi*k/N) for k in range(M) ] + r=[ e[k] - o[k]*math.e**(-2j*math.pi*k/N) for k in range(M) ] + return np.array(l+r) + diff --git a/benchmark/benchmarks/grayscott.py b/benchmark/benchmarks/grayscott.py new file mode 100644 index 000000000..1fb6b2a09 --- /dev/null +++ b/benchmark/benchmarks/grayscott.py @@ -0,0 +1,31 @@ +#from http://stackoverflow.com/questions/26823312/numba-or-cython-acceleration-in-reaction-diffusion-algorithm +#setup: pass +#run: grayscott(40, 0.16, 0.08, 0.04, 0.06) + +#pythran export grayscott(int, float, float, float, float) +import numpy as np +def grayscott(counts, Du, Dv, F, k): + n = 300 + U = np.zeros((n+2,n+2), dtype=np.float32) + V = np.zeros((n+2,n+2), dtype=np.float32) + u, v = U[1:-1,1:-1], V[1:-1,1:-1] + + r = 20 + u[:] = 1.0 + U[n//2-r:n//2+r,n//2-r:n//2+r] = 0.50 + V[n//2-r:n//2+r,n//2-r:n//2+r] = 0.25 + u += 0.15*np.random.random((n,n)) + v += 0.15*np.random.random((n,n)) + + for i in range(counts): + Lu = ( U[0:-2,1:-1] + + U[1:-1,0:-2] - 4*U[1:-1,1:-1] + U[1:-1,2:] + + U[2: ,1:-1] ) + Lv = ( V[0:-2,1:-1] + + V[1:-1,0:-2] - 4*V[1:-1,1:-1] + V[1:-1,2:] + + V[2: ,1:-1] ) + uvv = u*v*v + u += Du*Lu - uvv + F*(1 - u) + v += Dv*Lv + uvv - (F + k)*v + + return V diff --git a/benchmark/benchmarks/grouping.py b/benchmark/benchmarks/grouping.py new file mode 100644 index 000000000..4171dd570 --- /dev/null +++ b/benchmark/benchmarks/grouping.py @@ -0,0 +1,11 @@ +#from: http://stackoverflow.com/questions/4651683/numpy-grouping-using-itertools-groupby-performance +#setup: import numpy as np ; N = 350000 ; values = np.array(np.random.randint(0,3298,size=N),dtype='u4') ; values.sort() +#run: grouping(values) + +#pythran export grouping(uint32 []) + +def grouping(values): + import numpy as np + diff = np.concatenate(([1], np.diff(values))) + idx = np.concatenate((np.where(diff)[0], [len(values)])) + return values[idx[:-1]], np.diff(idx) diff --git a/benchmark/benchmarks/growcut.py b/benchmark/benchmarks/growcut.py new file mode 100644 index 000000000..74584a63a --- /dev/null +++ b/benchmark/benchmarks/growcut.py @@ -0,0 +1,56 @@ +#from: http://continuum.io/blog/numba_performance +#setup: N = 10 ; import numpy as np ; image = np.random.rand(N, N, 3) ; state = np.zeros((N, N, 2)) ; state_next = np.empty_like(state) ; state[0, 0, 0] = state[0, 0, 1] = 1 +#run: growcut(image, state, state_next, 2) + +#pythran export growcut(float[][][], float[][][], float[][][], int) +import math +import numpy as np +def window_floor(idx, radius): + if radius > idx: + return 0 + else: + return idx - radius + + +def window_ceil(idx, ceil, radius): + if idx + radius > ceil: + return ceil + else: + return idx + radius + +def growcut(image, state, state_next, window_radius): + changes = 0 + sqrt_3 = math.sqrt(3.0) + + height = image.shape[0] + width = image.shape[1] + + for j in range(width): + for i in range(height): + + winning_colony = state[i, j, 0] + defense_strength = state[i, j, 1] + + for jj in range(window_floor(j, window_radius), + window_ceil(j+1, width, window_radius)): + for ii in range(window_floor(i, window_radius), + window_ceil(i+1, height, window_radius)): + if (ii != i and jj != j): + d = image[i, j, 0] - image[ii, jj, 0] + s = d * d + for k in range(1, 3): + d = image[i, j, k] - image[ii, jj, k] + s += d * d + gval = 1.0 - math.sqrt(s)/sqrt_3 + + attack_strength = gval * state[ii, jj, 1] + + if attack_strength > defense_strength: + defense_strength = attack_strength + winning_colony = state[ii, jj, 0] + changes += 1 + + state_next[i, j, 0] = winning_colony + state_next[i, j, 1] = defense_strength + + return changes diff --git a/benchmark/benchmarks/harris.py b/benchmark/benchmarks/harris.py new file mode 100644 index 000000000..ff509133b --- /dev/null +++ b/benchmark/benchmarks/harris.py @@ -0,0 +1,31 @@ +#from: parakeet testbed +#setup: import numpy as np ; M, N = 512, 512 ; I = np.random.randn(M,N) +#run: harris(I) + +#pythran export harris(float64[][]) +import numpy as np + + + +def harris(I): + m,n = I.shape + dx = (I[1:, :] - I[:m-1, :])[:, 1:] + dy = (I[:, 1:] - I[:, :n-1])[1:, :] + + # + # At each point we build a matrix + # of derivative products + # M = + # | A = dx^2 C = dx * dy | + # | C = dy * dx B = dy * dy | + # + # and the score at that point is: + # det(M) - k*trace(M)^2 + # + A = dx * dx + B = dy * dy + C = dx * dy + tr = A + B + det = A * B - C * C + k = 0.05 + return det - k * tr * tr diff --git a/benchmark/benchmarks/hasting.py b/benchmark/benchmarks/hasting.py new file mode 100644 index 000000000..02f861248 --- /dev/null +++ b/benchmark/benchmarks/hasting.py @@ -0,0 +1,12 @@ +#from: http://wiki.scipy.org/Cookbook/Theoretical_Ecology/Hastings_and_Powell +#setup: import numpy as np ; y = np.random.rand(3) ; args = np.random.rand(7) +#run: hasting(y, *args) + +#pythran export hasting(float [], float, float, float, float, float, float, float) +import numpy as np +def hasting(y, t, a1, a2, b1, b2, d1, d2): + yprime = np.empty((3,)) + yprime[0] = y[0] * (1. - y[0]) - a1*y[0]*y[1]/(1. + b1 * y[0]) + yprime[1] = a1*y[0]*y[1] / (1. + b1 * y[0]) - a2 * y[1]*y[2] / (1. + b2 * y[1]) - d1 * y[1] + yprime[2] = a2*y[1]*y[2]/(1. + b2*y[1]) - d2*y[2] + return yprime diff --git a/benchmark/benchmarks/hyantes.py b/benchmark/benchmarks/hyantes.py new file mode 100644 index 000000000..e7ccfa307 --- /dev/null +++ b/benchmark/benchmarks/hyantes.py @@ -0,0 +1,15 @@ +#setup: import numpy ; a = numpy.array([ [i/10., i/10., i/20.] for i in range(44440)], dtype=numpy.double) +#run: hyantes(0, 0, 90, 90, 1, 100, 80, 80, a) + +#pythran export hyantes(float, float, float, float, float, float, int, int, float[][]) +import numpy as np +def hyantes(xmin, ymin, xmax, ymax, step, range_, range_x, range_y, t): + X,Y = t.shape + pt = np.zeros((X,Y)) + for i in range(X): + for j in range(Y): + for k in t: + tmp = 6368.* np.arccos( np.cos(xmin+step*i)*np.cos( k[0] ) * np.cos((ymin+step*j)-k[1])+ np.sin(xmin+step*i)*np.sin(k[0])) + if tmp < range_: + pt[i,j]+=k[2] / (1+tmp) + return pt diff --git a/benchmark/benchmarks/julia.py b/benchmark/benchmarks/julia.py new file mode 100644 index 000000000..6014e6b67 --- /dev/null +++ b/benchmark/benchmarks/julia.py @@ -0,0 +1,27 @@ +#setup: N=50 +#run: julia(1., 1., N, 1.5, 10., 1e4) + +#pythran export julia(float, float, int, float, float, float) +import numpy as np +from time import time + +def kernel(zr, zi, cr, ci, lim, cutoff): + ''' Computes the number of iterations `n` such that + |z_n| > `lim`, where `z_n = z_{n-1}**2 + c`. + ''' + count = 0 + while ((zr*zr + zi*zi) < (lim*lim)) and count < cutoff: + zr, zi = zr * zr - zi * zi + cr, 2 * zr * zi + ci + count += 1 + return count + +def julia(cr, ci, N, bound=1.5, lim=1000., cutoff=1e6): + ''' Pure Python calculation of the Julia set for a given `c`. No NumPy + array operations are used. + ''' + julia = np.empty((N, N), np.uint32) + grid_x = np.linspace(-bound, bound, N) + for i, x in enumerate(grid_x): + for j, y in enumerate(grid_x): + julia[i,j] = kernel(x, y, cr, ci, lim, cutoff) + return julia diff --git a/benchmark/benchmarks/l2norm.py b/benchmark/benchmarks/l2norm.py new file mode 100644 index 000000000..5eb610f17 --- /dev/null +++ b/benchmark/benchmarks/l2norm.py @@ -0,0 +1,8 @@ +#from: http://stackoverflow.com/questions/7741878/how-to-apply-numpy-linalg-norm-to-each-row-of-a-matrix/7741976#7741976 +#setup: import numpy as np ; N = 1000; x = np.random.rand(N,N) +#run: l2norm(x) + +#pythran export l2norm(float64[][]) +import numpy as np +def l2norm(x): + return np.sqrt(np.sum(np.abs(x)**2, 1)) diff --git a/benchmark/benchmarks/local_maxima.py b/benchmark/benchmarks/local_maxima.py new file mode 100644 index 000000000..7621d122b --- /dev/null +++ b/benchmark/benchmarks/local_maxima.py @@ -0,0 +1,27 @@ +#from: https://github.com/iskandr/parakeet/blob/master/benchmarks/nd_local_maxima.py +#setup: import numpy as np ; shape = (3,4,3,2) ; x = np.arange(72, dtype=np.float64).reshape(*shape) +#run: local_maxima(x) + +#pythran export local_maxima(float [][][][]) +import numpy as np + +def wrap(pos, offset, bound): + return ( pos + offset ) % bound + +def clamp(pos, offset, bound): + return min(bound-1,max(0,pos+offset)) + +def reflect(pos, offset, bound): + idx = pos+offset + return min(2*(bound-1)-idx,max(idx,-idx)) + + +def local_maxima(data, mode=wrap): + wsize = data.shape + result = np.ones(data.shape, bool) + for pos in np.ndindex(data.shape): + myval = data[pos] + for offset in np.ndindex(wsize): + neighbor_idx = tuple(mode(p, o-w//2, w) for (p, o, w) in zip(pos, offset, wsize)) + result[pos] &= (data[neighbor_idx] <= myval) + return result diff --git a/benchmark/benchmarks/log_likelihood.py b/benchmark/benchmarks/log_likelihood.py new file mode 100644 index 000000000..848d45326 --- /dev/null +++ b/benchmark/benchmarks/log_likelihood.py @@ -0,0 +1,11 @@ +#setup: import numpy as np ; N = 100000 ; a = np.random.random(N); b = 0.1; c =1.1 +#run: log_likelihood(a, b, c) +#from: http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html +import numpy + +#pythran export log_likelihood(float64[], float64, float64) +def log_likelihood(data, mean, sigma): + s = (data - mean) ** 2 / (2 * (sigma ** 2)) + pdfs = numpy.exp(- s) + pdfs /= numpy.sqrt(2 * numpy.pi) * sigma + return numpy.log(pdfs).sum() diff --git a/benchmark/benchmarks/lstsqr.py b/benchmark/benchmarks/lstsqr.py new file mode 100644 index 000000000..10f2b8318 --- /dev/null +++ b/benchmark/benchmarks/lstsqr.py @@ -0,0 +1,17 @@ +#setup: import numpy as np ; N = 500000 ; X, Y = np.random.rand(N), np.random.rand(N) +#run: lstsqr(X, Y) +#from: http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb + +#pythran export lstsqr(float[], float[]) +import numpy as np +def lstsqr(x, y): + """ Computes the least-squares solution to a linear matrix equation. """ + x_avg = np.average(x) + y_avg = np.average(y) + dx = x - x_avg + dy = y - y_avg + var_x = np.sum(dx**2) + cov_xy = np.sum(dx * (y - y_avg)) + slope = cov_xy / var_x + y_interc = y_avg - slope*x_avg + return (slope, y_interc) diff --git a/benchmark/benchmarks/mandel.py b/benchmark/benchmarks/mandel.py new file mode 100644 index 000000000..a5ef96cbd --- /dev/null +++ b/benchmark/benchmarks/mandel.py @@ -0,0 +1,32 @@ +#setup: import numpy as np; image = np.zeros((64, 32), dtype = np.uint8) +#run: mandel(-2.0, 1.0, -1.0, 1.0, image, 20) + +#pythran export mandel(float, float, float, float, uint8[][], int) +def kernel(x, y, max_iters): + """ + Given the real and imaginary parts of a complex number, + determine if it is a candidate for membership in the Mandelbrot + set given a fixed number of iterations. + """ + c = complex(x, y) + z = 0.0j + for i in range(max_iters): + z = z*z + c + if (z.real*z.real + z.imag*z.imag) >= 4: + return i + + return max_iters + +def mandel(min_x, max_x, min_y, max_y, image, iters): + height = image.shape[0] + width = image.shape[1] + + pixel_size_x = (max_x - min_x) / width + pixel_size_y = (max_y - min_y) / height + + for x in range(width): + real = min_x + x * pixel_size_x + for y in range(height): + imag = min_y + y * pixel_size_y + color = kernel(real, imag, iters) + image[y, x] = color diff --git a/benchmark/benchmarks/multiple_sum.py b/benchmark/benchmarks/multiple_sum.py new file mode 100644 index 000000000..580c9ad1c --- /dev/null +++ b/benchmark/benchmarks/multiple_sum.py @@ -0,0 +1,16 @@ +#from http://stackoverflow.com/questions/77999777799977/numpy-vs-cython-speed +#pythran export multiple_sum(float[][]) +#setup: import numpy as np ; r = np.random.rand(100,100) +#run: multiple_sum(r) +import numpy as np +def multiple_sum(array): + + rows = array.shape[0] + cols = array.shape[1] + + out = np.zeros((rows, cols)) + + for row in range(0, rows): + out[row, :] = np.sum(array - array[row, :], 0) + + return out diff --git a/benchmark/benchmarks/pairwise.py b/benchmark/benchmarks/pairwise.py new file mode 100644 index 000000000..e8a8187d0 --- /dev/null +++ b/benchmark/benchmarks/pairwise.py @@ -0,0 +1,18 @@ +#from: http://jakevdp.github.com/blog/2012/08/24/numba-vs-cython/ +#setup: import numpy as np ; X = np.linspace(0,10,200).reshape(20,10) +#run: pairwise(X) + +#pythran export pairwise(float [][]) + +import numpy as np +def pairwise(X): + M, N = X.shape + D = np.empty((M,M)) + for i in range(M): + for j in range(M): + d = 0.0 + for k in range(N): + tmp = X[i,k] - X[j,k] + d += tmp * tmp + D[i,j] = np.sqrt(d) + return D diff --git a/benchmark/benchmarks/periodic_dist.py b/benchmark/benchmarks/periodic_dist.py new file mode 100644 index 000000000..a7228b221 --- /dev/null +++ b/benchmark/benchmarks/periodic_dist.py @@ -0,0 +1,36 @@ +#setup: import numpy as np ; N = 20 ; x = y = z = np.arange(0., N, 0.1) ; L = 4 ; periodic = True +#run: periodic_dist(x, x, x, L,periodic, periodic, periodic) + +#pythran export periodic_dist(float [], float[], float[], int, bool, bool, bool) +import numpy as np + +def periodic_dist(x, y, z, L, periodicX, periodicY, periodicZ): + " ""Computes distances between all particles and places the result in a matrix such that the ij th matrix entry corresponds to the distance between particle i and j"" " + N = len(x) + xtemp = np.tile(x,(N,1)) + dx = xtemp - xtemp.T + ytemp = np.tile(y,(N,1)) + dy = ytemp - ytemp.T + ztemp = np.tile(z,(N,1)) + dz = ztemp - ztemp.T + + # Particles 'feel' each other across the periodic boundaries + if periodicX: + dx[dx>L/2]=dx[dx > L/2]-L + dx[dx<-L/2]=dx[dx < -L/2]+L + + if periodicY: + dy[dy>L/2]=dy[dy>L/2]-L + dy[dy<-L/2]=dy[dy<-L/2]+L + + if periodicZ: + dz[dz>L/2]=dz[dz>L/2]-L + dz[dz<-L/2]=dz[dz<-L/2]+L + + # Total Distances + d = np.sqrt(dx**2+dy**2+dz**2) + + # Mark zero entries with negative 1 to avoid divergences + d[d==0] = -1 + + return d, dx, dy, dz diff --git a/benchmark/benchmarks/repeating.py b/benchmark/benchmarks/repeating.py new file mode 100644 index 000000000..1ca0dd4a2 --- /dev/null +++ b/benchmark/benchmarks/repeating.py @@ -0,0 +1,13 @@ +#from: http://stackoverflow.com/questions/14553331/how-to-improve-numpy-performance-in-this-short-code +#pythran export repeating(float[], int) +#setup: import numpy as np ; a = np.random.rand(10000) +#run: repeating(a, 20) + +import numpy as np + +def repeating(x, nvar_y): + nvar_x = x.shape[0] + y = np.empty(nvar_x*(1+nvar_y)) + y[0:nvar_x] = x[0:nvar_x] + y[nvar_x:] = np.repeat(x,nvar_y) + return y diff --git a/benchmark/benchmarks/reverse_cumsum.py b/benchmark/benchmarks/reverse_cumsum.py new file mode 100644 index 000000000..2aedefd41 --- /dev/null +++ b/benchmark/benchmarks/reverse_cumsum.py @@ -0,0 +1,7 @@ +#from: http://stackoverflow.com/questions/16541618/perform-a-reverse-cumulative-sum-on-a-numpy-array +#pythran export reverse_cumsum(float[]) +#setup: import numpy as np ; r = np.random.rand(1000000) +#run: reverse_cumsum(r) +import numpy as np +def reverse_cumsum(x): + return np.cumsum(x[::-1])[::-1] diff --git a/benchmark/benchmarks/rosen.py b/benchmark/benchmarks/rosen.py new file mode 100644 index 000000000..0e73b70c0 --- /dev/null +++ b/benchmark/benchmarks/rosen.py @@ -0,0 +1,10 @@ +#setup: import numpy as np; r = np.arange(1000000, dtype=float) +#run: rosen(r) +import numpy as np + +#pythran export rosen(float[]) + +def rosen(x): + t0 = 100 * (x[1:] - x[:-1] ** 2) ** 2 + t1 = (1 - x[:-1]) ** 2 + return np.sum(t0 + t1) diff --git a/benchmark/benchmarks/slowparts.py b/benchmark/benchmarks/slowparts.py new file mode 100644 index 000000000..5101b4427 --- /dev/null +++ b/benchmark/benchmarks/slowparts.py @@ -0,0 +1,17 @@ +#from: https://groups.google.com/forum/#!topic/parakeet-python/p-flp2kdE4U +#setup: import numpy as np ;d = 10 ;re = 5 ;params = (d, re, np.ones((2*d, d+1, re)), np.ones((d, d+1, re)), np.ones((d, 2*d)), np.ones((d, 2*d)), np.ones((d+1, re, d)), np.ones((d+1, re, d)), 1) +#run: slowparts(*params) + +#pythran export slowparts(int, int, float [][][], float [][][], float [][], float [][], float [][][], float [][][], int) +from numpy import zeros, power, tanh +def slowparts(d, re, preDz, preWz, SRW, RSW, yxV, xyU, resid): + """ computes the linear algebra intensive part of the gradients of the grae + """ + fprime = lambda x: 1 - power(tanh(x), 2) + + partialDU = zeros((d+1, re, 2*d, d)) + for k in range(2*d): + for i in range(d): + partialDU[:,:,k,i] = fprime(preDz[k]) * fprime(preWz[i]) * (SRW[i,k] + RSW[i,k]) * yxV[:,:,i] + + return partialDU diff --git a/benchmark/benchmarks/smoothing.py b/benchmark/benchmarks/smoothing.py new file mode 100644 index 000000000..052d6ee7d --- /dev/null +++ b/benchmark/benchmarks/smoothing.py @@ -0,0 +1,17 @@ +#setup: import numpy as np ; N = 1000 ; a = np.arange(0,1,N) +#run: smoothing(a, .4) +#from: http://www.parakeetpython.com/ + +#pythran export smoothing(float[], float) + +def smoothing(x, alpha): + """ + Exponential smoothing of a time series + For x = 10**6 floats + - Python runtime: 9 seconds + - Parakeet runtime: .01 seconds + """ + s = x.copy() + for i in range(1, len(x)): + s[i] = alpha * x[i] + (1 - alpha) * s[i-1] + return s diff --git a/benchmark/benchmarks/specialconvolve.py b/benchmark/benchmarks/specialconvolve.py new file mode 100644 index 000000000..7b75a13e2 --- /dev/null +++ b/benchmark/benchmarks/specialconvolve.py @@ -0,0 +1,10 @@ +#from: http://stackoverflow.com/questions/2196693/improving-numpy-performance +#pythran export specialconvolve(uint32 [][]) +#setup: import numpy as np ; r = np.arange(100*10000, dtype=np.uint32).reshape(1000,1000) +#run: specialconvolve(r) + +def specialconvolve(a): + # sorry, you must pad the input yourself + rowconvol = a[1:-1,:] + a[:-2,:] + a[2:,:] + colconvol = rowconvol[:,1:-1] + rowconvol[:,:-2] + rowconvol[:,2:] - 9*a[1:-1,1:-1] + return colconvol diff --git a/benchmark/benchmarks/vibr_energy.py b/benchmark/benchmarks/vibr_energy.py new file mode 100644 index 000000000..1ffa48948 --- /dev/null +++ b/benchmark/benchmarks/vibr_energy.py @@ -0,0 +1,8 @@ +#from: http://stackoverflow.com/questions/17112550/python-and-numba-for-vectorized-functions +#setup: import numpy as np ; N = 100000 ; a, b, c = np.random.rand(N), np.random.rand(N), np.random.rand(N) +#run: vibr_energy(a, b, c) + +#pythran export vibr_energy(float64[], float64[], float64[]) +import numpy +def vibr_energy(harmonic, anharmonic, i): + return numpy.exp(-harmonic * i - anharmonic * (i ** 2)) diff --git a/benchmark/benchmarks/wave.py b/benchmark/benchmarks/wave.py new file mode 100644 index 000000000..53fb9b237 --- /dev/null +++ b/benchmark/benchmarks/wave.py @@ -0,0 +1,54 @@ +#from https://github.com/sklam/numba-example-wavephysics +#setup: N=100 +#run: wave(N) +import numpy as np +from math import ceil + +def physics(masspoints, dt, plunk, which): + ppos = masspoints[1] + cpos = masspoints[0] + N = cpos.shape[0] + # apply hooke's law + HOOKE_K = 2100000. + DAMPING = 0.0001 + MASS = .01 + + force = np.zeros((N, 2)) + for i in range(1, N): + dx, dy = cpos[i] - cpos[i - 1] + dist = np.sqrt(dx**2 + dy**2) + assert dist != 0 + fmag = -HOOKE_K * dist + cosine = dx / dist + sine = dy / dist + fvec = np.array([fmag * cosine, fmag * sine]) + force[i - 1] -= fvec + force[i] += fvec + + force[0] = force[-1] = 0, 0 + force[which][1] += plunk + accel = force / MASS + + # verlet integration + npos = (2 - DAMPING) * cpos - (1 - DAMPING) * ppos + accel * (dt**2) + + masspoints[1] = cpos + masspoints[0] = npos + +#pythran export wave(int) +def wave(PARTICLE_COUNT): + SUBDIVISION = 300 + FRAMERATE = 60 + count = PARTICLE_COUNT + width, height = 1200, 400 + + masspoints = np.empty((2, count, 2), np.float64) + initpos = np.zeros(count, np.float64) + for i in range(1, count): + initpos[i] = initpos[i - 1] + float(width) / count + masspoints[:, :, 0] = initpos + masspoints[:, :, 1] = height / 2 + f = 15 + plunk_pos = count // 2 + physics( masspoints, 1./ (SUBDIVISION * FRAMERATE), f, plunk_pos) + return masspoints[0, count // 2] diff --git a/benchmark/benchmarks/wdist.py b/benchmark/benchmarks/wdist.py new file mode 100644 index 000000000..9e5b84ae7 --- /dev/null +++ b/benchmark/benchmarks/wdist.py @@ -0,0 +1,18 @@ +#from: http://stackoverflow.com/questions/19277244/fast-weighted-euclidean-distance-between-points-in-arrays/19277334#19277334 +#setup: import numpy as np ; N = 10 ; A = np.random.rand(N,N) ; B = np.random.rand(N,N) ; W = np.random.rand(N,N) +#run: wdist(A,B,W) + +#pythran export wdist(float64 [][], float64 [][], float64[][]) + +import numpy as np +def wdist(A, B, W): + + k,m = A.shape + _,n = B.shape + D = np.zeros((m, n)) + + for ii in range(m): + for jj in range(n): + wdiff = (A[:,ii] - B[:,jj]) / W[:,ii] + D[ii,jj] = np.sqrt((wdiff**2).sum()) + return D diff --git a/benchmark/plot_benchmark.py b/benchmark/plot_benchmark.py new file mode 100644 index 000000000..91bb84240 --- /dev/null +++ b/benchmark/plot_benchmark.py @@ -0,0 +1,29 @@ +import matplotlib.pyplot as plt +import numpy as np +import json +import sys + +plt.rcdefaults() +fig, ax = plt.subplots(constrained_layout=True, figsize=(8, 8)) + +with open(sys.argv[-2]) as fp: + content = json.load(fp) + +results = [] +for k, v in content.items(): + results.append((k, v[1] / v[0])) +results.sort(key=lambda x: x[1], reverse=True) + +names = [x[0] for x in results] +values = [x[1] for x in results] + +y_pos = np.arange(len(results)) +ax.barh(y_pos, values, align='center') +ax.set_yticks(y_pos) +ax.set_yticklabels(names) +ax.invert_yaxis() +ax.set_xlabel('Slowdown factor') +ax.set_title('Native vs. WebAssembly Python benchmarks') +ax.grid() + +plt.savefig(sys.argv[-1]) diff --git a/numpy/Makefile b/numpy/Makefile index 1528e2bde..3a20dab43 100644 --- a/numpy/Makefile +++ b/numpy/Makefile @@ -77,7 +77,7 @@ $(HOSTDIR)/setup.py: $(ZIPFILE) $(HOSTBUILD)/lib.$(PLATFORMSLUG)/numpy/__init__.py: $(ROOT)/.patched ( \ cd $(HOSTDIR); \ - $(HOSTPYTHON) setup.py build \ + $(HOSTPYTHON) setup.py install \ ) diff --git a/src/pystone.py b/src/pystone.py new file mode 100755 index 000000000..97ad7a006 --- /dev/null +++ b/src/pystone.py @@ -0,0 +1,279 @@ +#! /usr/bin/env python +# -*- coding: utf-8 -*- + +""" +"PYSTONE" Benchmark Program + +Version: Python/1.1 (corresponds to C/1.1 plus 2 Pystone fixes) + +Author: Reinhold P. Weicker, CACM Vol 27, No 10, 10/84 pg. 1013. + + Translated from ADA to C by Rick Richardson. + Every method to preserve ADA-likeness has been used, + at the expense of C-ness. + + Translated from C to Python by Guido van Rossum. + +Version History: + + Inofficial version 1.1.1 by Chris Arndt: + + - Make it run under Python 2 and 3 by using + "from __future__ import print_function". + - Change interpreter name in shebang line to plain + "python". + - Add source code encoding declaration. + + Version 1.1 corrects two bugs in version 1.0: + + First, it leaked memory: in Proc1(), NextRecord ends + up having a pointer to itself. I have corrected this + by zapping NextRecord.PtrComp at the end of Proc1(). + + Second, Proc3() used the operator != to compare a + record to None. This is rather inefficient and not + true to the intention of the original benchmark (where + a pointer comparison to None is intended; the != + operator attempts to find a method __cmp__ to do value + comparison of the record). Version 1.1 runs 5-10 + percent faster than version 1.0, so benchmark figures + of different versions can't be compared directly. + +""" + +from __future__ import print_function + +LOOPS = 50000 + +from time import clock + +__version__ = "1.1.1" + +[Ident1, Ident2, Ident3, Ident4, Ident5] = range(1, 6) + +class Record: + + def __init__(self, PtrComp = None, Discr = 0, EnumComp = 0, + IntComp = 0, StringComp = 0): + self.PtrComp = PtrComp + self.Discr = Discr + self.EnumComp = EnumComp + self.IntComp = IntComp + self.StringComp = StringComp + + def copy(self): + return Record(self.PtrComp, self.Discr, self.EnumComp, + self.IntComp, self.StringComp) + +TRUE = 1 +FALSE = 0 + +def main(loops=LOOPS): + benchtime, stones = pystones(loops) + print("%g" % benchtime) + + +def pystones(loops=LOOPS): + return Proc0(loops) + +IntGlob = 0 +BoolGlob = FALSE +Char1Glob = '\0' +Char2Glob = '\0' +Array1Glob = [0]*51 +Array2Glob = [x[:] for x in [Array1Glob]*51] +PtrGlb = None +PtrGlbNext = None + +def Proc0(loops=LOOPS): + global IntGlob + global BoolGlob + global Char1Glob + global Char2Glob + global Array1Glob + global Array2Glob + global PtrGlb + global PtrGlbNext + + starttime = clock() + for i in range(loops): + pass + nulltime = clock() - starttime + + PtrGlbNext = Record() + PtrGlb = Record() + PtrGlb.PtrComp = PtrGlbNext + PtrGlb.Discr = Ident1 + PtrGlb.EnumComp = Ident3 + PtrGlb.IntComp = 40 + PtrGlb.StringComp = "DHRYSTONE PROGRAM, SOME STRING" + String1Loc = "DHRYSTONE PROGRAM, 1'ST STRING" + Array2Glob[8][7] = 10 + + starttime = clock() + + for i in range(loops): + Proc5() + Proc4() + IntLoc1 = 2 + IntLoc2 = 3 + String2Loc = "DHRYSTONE PROGRAM, 2'ND STRING" + EnumLoc = Ident2 + BoolGlob = not Func2(String1Loc, String2Loc) + while IntLoc1 < IntLoc2: + IntLoc3 = 5 * IntLoc1 - IntLoc2 + IntLoc3 = Proc7(IntLoc1, IntLoc2) + IntLoc1 = IntLoc1 + 1 + Proc8(Array1Glob, Array2Glob, IntLoc1, IntLoc3) + PtrGlb = Proc1(PtrGlb) + CharIndex = 'A' + while CharIndex <= Char2Glob: + if EnumLoc == Func1(CharIndex, 'C'): + EnumLoc = Proc6(Ident1) + CharIndex = chr(ord(CharIndex)+1) + IntLoc3 = IntLoc2 * IntLoc1 + IntLoc2 = IntLoc3 / IntLoc1 + IntLoc2 = 7 * (IntLoc3 - IntLoc2) - IntLoc1 + IntLoc1 = Proc2(IntLoc1) + + benchtime = clock() - starttime - nulltime + if benchtime == 0.0: + loopsPerBenchtime = 0.0 + else: + loopsPerBenchtime = (loops / benchtime) + return benchtime, loopsPerBenchtime + +def Proc1(PtrParIn): + PtrParIn.PtrComp = NextRecord = PtrGlb.copy() + PtrParIn.IntComp = 5 + NextRecord.IntComp = PtrParIn.IntComp + NextRecord.PtrComp = PtrParIn.PtrComp + NextRecord.PtrComp = Proc3(NextRecord.PtrComp) + if NextRecord.Discr == Ident1: + NextRecord.IntComp = 6 + NextRecord.EnumComp = Proc6(PtrParIn.EnumComp) + NextRecord.PtrComp = PtrGlb.PtrComp + NextRecord.IntComp = Proc7(NextRecord.IntComp, 10) + else: + PtrParIn = NextRecord.copy() + NextRecord.PtrComp = None + return PtrParIn + +def Proc2(IntParIO): + IntLoc = IntParIO + 10 + while 1: + if Char1Glob == 'A': + IntLoc = IntLoc - 1 + IntParIO = IntLoc - IntGlob + EnumLoc = Ident1 + if EnumLoc == Ident1: + break + return IntParIO + +def Proc3(PtrParOut): + global IntGlob + + if PtrGlb is not None: + PtrParOut = PtrGlb.PtrComp + else: + IntGlob = 100 + PtrGlb.IntComp = Proc7(10, IntGlob) + return PtrParOut + +def Proc4(): + global Char2Glob + + BoolLoc = Char1Glob == 'A' + BoolLoc = BoolLoc or BoolGlob + Char2Glob = 'B' + +def Proc5(): + global Char1Glob + global BoolGlob + + Char1Glob = 'A' + BoolGlob = FALSE + +def Proc6(EnumParIn): + EnumParOut = EnumParIn + if not Func3(EnumParIn): + EnumParOut = Ident4 + if EnumParIn == Ident1: + EnumParOut = Ident1 + elif EnumParIn == Ident2: + if IntGlob > 100: + EnumParOut = Ident1 + else: + EnumParOut = Ident4 + elif EnumParIn == Ident3: + EnumParOut = Ident2 + elif EnumParIn == Ident4: + pass + elif EnumParIn == Ident5: + EnumParOut = Ident3 + return EnumParOut + +def Proc7(IntParI1, IntParI2): + IntLoc = IntParI1 + 2 + IntParOut = IntParI2 + IntLoc + return IntParOut + +def Proc8(Array1Par, Array2Par, IntParI1, IntParI2): + global IntGlob + + IntLoc = IntParI1 + 5 + Array1Par[IntLoc] = IntParI2 + Array1Par[IntLoc+1] = Array1Par[IntLoc] + Array1Par[IntLoc+30] = IntLoc + for IntIndex in range(IntLoc, IntLoc+2): + Array2Par[IntLoc][IntIndex] = IntLoc + Array2Par[IntLoc][IntLoc-1] = Array2Par[IntLoc][IntLoc-1] + 1 + Array2Par[IntLoc+20][IntLoc] = Array1Par[IntLoc] + IntGlob = 5 + +def Func1(CharPar1, CharPar2): + CharLoc1 = CharPar1 + CharLoc2 = CharLoc1 + if CharLoc2 != CharPar2: + return Ident1 + else: + return Ident2 + +def Func2(StrParI1, StrParI2): + IntLoc = 1 + while IntLoc <= 1: + if Func1(StrParI1[IntLoc], StrParI2[IntLoc+1]) == Ident1: + CharLoc = 'A' + IntLoc = IntLoc + 1 + if CharLoc >= 'W' and CharLoc <= 'Z': + IntLoc = 7 + if CharLoc == 'X': + return TRUE + else: + if StrParI1 > StrParI2: + IntLoc = IntLoc + 7 + return TRUE + else: + return FALSE + +def Func3(EnumParIn): + EnumLoc = EnumParIn + if EnumLoc == Ident3: return TRUE + return FALSE + +if __name__ == '__main__': + import sys + def error(msg): + print(msg, end=' ', file=sys.stderr) + print("usage: %s [number_of_loops]" % sys.argv[0], file=sys.stderr) + sys.exit(100) + nargs = len(sys.argv) - 1 + if nargs > 1: + error("%d arguments are too many;" % nargs) + elif nargs == 1: + try: loops = int(sys.argv[1]) + except ValueError: + error("Invalid argument %r;" % sys.argv[1]) + else: + loops = LOOPS + main(loops) diff --git a/test/conftest.py b/test/conftest.py index f5102b1a4..fa75ccc42 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -4,7 +4,10 @@ Various common utilities for testing. import pathlib -import pytest +try: + import pytest +except ImportError: + pytest = None TEST_PATH = pathlib.Path(__file__).parents[0].resolve() @@ -47,8 +50,9 @@ class SeleniumWrapper: yield self.driver.current_url -@pytest.fixture -def selenium(): - selenium = SeleniumWrapper() - yield selenium - selenium.driver.quit() +if pytest is not None: + @pytest.fixture + def selenium(): + selenium = SeleniumWrapper() + yield selenium + selenium.driver.quit()