pyodide/benchmark/benchmarks/allpairs_distances.py

15 lines
495 B
Python
Raw Normal View History

2018-10-03 18:59:01 +00:00
# setup: import numpy as np ; N = 50 ; X, Y = np.random.randn(100,N), np.random.randn(40,N) # noqa
# run: allpairs_distances(X, Y)
2018-04-05 22:07:33 +00:00
2018-10-03 18:59:01 +00:00
# pythran export allpairs_distances(float64[][], float64[][])
2018-04-05 22:07:33 +00:00
import numpy as np
2018-10-03 12:38:48 +00:00
def allpairs_distances(A, B):
""" This returns the euclidean distances squared
dist2(x, y) = dot(x, x) - 2 * dot(x, y) + dot(y, y)
"""
A2 = np.einsum('ij,ij->i', A, A)
B2 = np.einsum('ij,ij->i', B, B)
2018-10-03 18:59:01 +00:00
return A2[:, None] + B2[None, :] - 2 * np.dot(A, B.T)