mirror of https://github.com/pyodide/pyodide.git
13 lines
589 B
Python
13 lines
589 B
Python
|
#from: http://wiki.scipy.org/Cookbook/Theoretical_Ecology/Hastings_and_Powell
|
||
|
#setup: import numpy as np ; y = np.random.rand(3) ; args = np.random.rand(7)
|
||
|
#run: hasting(y, *args)
|
||
|
|
||
|
#pythran export hasting(float [], float, float, float, float, float, float, float)
|
||
|
import numpy as np
|
||
|
def hasting(y, t, a1, a2, b1, b2, d1, d2):
|
||
|
yprime = np.empty((3,))
|
||
|
yprime[0] = y[0] * (1. - y[0]) - a1*y[0]*y[1]/(1. + b1 * y[0])
|
||
|
yprime[1] = a1*y[0]*y[1] / (1. + b1 * y[0]) - a2 * y[1]*y[2] / (1. + b2 * y[1]) - d1 * y[1]
|
||
|
yprime[2] = a2*y[1]*y[2]/(1. + b2*y[1]) - d2*y[2]
|
||
|
return yprime
|