pyodide/benchmark/benchmarks/periodic_dist.py

37 lines
1.1 KiB
Python
Raw Normal View History

2018-04-05 22:07:33 +00:00
#setup: import numpy as np ; N = 20 ; x = y = z = np.arange(0., N, 0.1) ; L = 4 ; periodic = True
#run: periodic_dist(x, x, x, L,periodic, periodic, periodic)
#pythran export periodic_dist(float [], float[], float[], int, bool, bool, bool)
import numpy as np
def periodic_dist(x, y, z, L, periodicX, periodicY, periodicZ):
" ""Computes distances between all particles and places the result in a matrix such that the ij th matrix entry corresponds to the distance between particle i and j"" "
N = len(x)
xtemp = np.tile(x,(N,1))
dx = xtemp - xtemp.T
ytemp = np.tile(y,(N,1))
dy = ytemp - ytemp.T
ztemp = np.tile(z,(N,1))
dz = ztemp - ztemp.T
# Particles 'feel' each other across the periodic boundaries
if periodicX:
dx[dx>L/2]=dx[dx > L/2]-L
dx[dx<-L/2]=dx[dx < -L/2]+L
if periodicY:
dy[dy>L/2]=dy[dy>L/2]-L
dy[dy<-L/2]=dy[dy<-L/2]+L
if periodicZ:
dz[dz>L/2]=dz[dz>L/2]-L
dz[dz<-L/2]=dz[dz<-L/2]+L
# Total Distances
d = np.sqrt(dx**2+dy**2+dz**2)
# Mark zero entries with negative 1 to avoid divergences
d[d==0] = -1
return d, dx, dy, dz