pyodide/benchmark/benchmarks/slowparts.py

27 lines
988 B
Python
Raw Normal View History

2018-10-03 18:59:01 +00:00
# from: https://groups.google.com/forum/#!topic/parakeet-python/p-flp2kdE4U
# setup: import numpy as np ;d = 10 ;re = 5 ;params = (d, re, np.ones((2*d, d+1, re)), np.ones((d, d+1, re)), np.ones((d, 2*d)), np.ones((d, 2*d)), np.ones((d+1, re, d)), np.ones((d+1, re, d)), 1) # noqa
# run: slowparts(*params)
2018-04-05 22:07:33 +00:00
2018-10-03 18:59:01 +00:00
# pythran export slowparts(int, int, float [][][], float [][][], float
# [][], float [][], float [][][], float [][][], int)
2018-04-05 22:07:33 +00:00
from numpy import zeros, power, tanh
2018-10-03 12:38:48 +00:00
2018-04-05 22:07:33 +00:00
def slowparts(d, re, preDz, preWz, SRW, RSW, yxV, xyU, resid):
2020-09-24 10:28:10 +00:00
"""computes the linear algebra intensive part of the gradients of the grae"""
def fprime(x):
return 1 - power(tanh(x), 2)
2018-04-05 22:07:33 +00:00
2018-10-03 18:59:01 +00:00
partialDU = zeros((d + 1, re, 2 * d, d))
for k in range(2 * d):
2018-04-05 22:07:33 +00:00
for i in range(d):
2018-10-03 18:59:01 +00:00
partialDU[:, :, k, i] = (
fprime(preDz[k])
* fprime(preWz[i])
* (SRW[i, k] + RSW[i, k])
* yxV[:, :, i]
)
2018-10-03 12:38:48 +00:00
2018-04-05 22:07:33 +00:00
return partialDU