lightning/tests/models/test_torchscript.py

191 lines
6.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import fsspec
import pytest
import torch
from fsspec.implementations.local import LocalFileSystem
from pytorch_lightning.utilities.cloud_io import get_filesystem
from tests.helpers import BoringModel
from tests.helpers.advanced_models import BasicGAN, ParityModuleRNN
from tests.helpers.datamodules import MNISTDataModule
from tests.helpers.runif import RunIf
@pytest.mark.parametrize("modelclass", [
BoringModel,
ParityModuleRNN,
BasicGAN,
])
def test_torchscript_input_output(modelclass):
""" Test that scripted LightningModule forward works. """
model = modelclass()
if isinstance(model, BoringModel):
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript()
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(model.example_input_array)
script_output = script(model.example_input_array)
assert torch.allclose(script_output, model_output)
@pytest.mark.parametrize("modelclass", [
BoringModel,
ParityModuleRNN,
BasicGAN,
])
def test_torchscript_example_input_output_trace(modelclass):
""" Test that traced LightningModule forward works with example_input_array """
model = modelclass()
if isinstance(model, BoringModel):
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript(method='trace')
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(model.example_input_array)
script_output = script(model.example_input_array)
assert torch.allclose(script_output, model_output)
def test_torchscript_input_output_trace():
""" Test that traced LightningModule forward works with example_inputs """
model = BoringModel()
example_inputs = torch.randn(1, 32)
script = model.to_torchscript(example_inputs=example_inputs, method='trace')
assert isinstance(script, torch.jit.ScriptModule)
model.eval()
with torch.no_grad():
model_output = model(example_inputs)
script_output = script(example_inputs)
assert torch.allclose(script_output, model_output)
@RunIf(min_gpus=1)
@pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)])
def test_torchscript_device(device):
""" Test that scripted module is on the correct device. """
model = BoringModel().to(device)
model.example_input_array = torch.randn(5, 32)
script = model.to_torchscript()
assert next(script.parameters()).device == device
script_output = script(model.example_input_array.to(device))
assert script_output.device == device
def test_torchscript_retain_training_state():
""" Test that torchscript export does not alter the training mode of original model. """
model = BoringModel()
model.train(True)
script = model.to_torchscript()
assert model.training
assert not script.training
model.train(False)
_ = model.to_torchscript()
assert not model.training
assert not script.training
@pytest.mark.parametrize("modelclass", [
BoringModel,
ParityModuleRNN,
BasicGAN,
])
def test_torchscript_properties(tmpdir, modelclass):
""" Test that scripted LightningModule has unnecessary methods removed. """
model = modelclass()
model.datamodule = MNISTDataModule(tmpdir)
script = model.to_torchscript()
assert not hasattr(script, "datamodule")
assert not hasattr(model, "batch_size") or hasattr(script, "batch_size")
assert not hasattr(model, "learning_rate") or hasattr(script, "learning_rate")
assert not callable(getattr(script, "training_step", None))
@pytest.mark.parametrize("modelclass", [
BoringModel,
ParityModuleRNN,
BasicGAN,
])
@RunIf(min_torch="1.5.0")
def test_torchscript_save_load(tmpdir, modelclass):
""" Test that scripted LightningModule is correctly saved and can be loaded. """
model = modelclass()
output_file = str(tmpdir / "model.pt")
script = model.to_torchscript(file_path=output_file)
loaded_script = torch.jit.load(output_file)
assert torch.allclose(next(script.parameters()), next(loaded_script.parameters()))
@pytest.mark.parametrize("modelclass", [
BoringModel,
ParityModuleRNN,
BasicGAN,
])
@RunIf(min_torch="1.5.0")
def test_torchscript_save_load_custom_filesystem(tmpdir, modelclass):
""" Test that scripted LightningModule is correctly saved and can be loaded with custom filesystems. """
_DUMMY_PRFEIX = "dummy"
_PREFIX_SEPARATOR = "://"
class DummyFileSystem(LocalFileSystem):
...
fsspec.register_implementation(_DUMMY_PRFEIX, DummyFileSystem, clobber=True)
model = modelclass()
output_file = os.path.join(_DUMMY_PRFEIX, _PREFIX_SEPARATOR, tmpdir, "model.pt")
script = model.to_torchscript(file_path=output_file)
fs = get_filesystem(output_file)
with fs.open(output_file, "rb") as f:
loaded_script = torch.jit.load(f)
assert torch.allclose(next(script.parameters()), next(loaded_script.parameters()))
def test_torchcript_invalid_method(tmpdir):
"""Test that an error is thrown with invalid torchscript method"""
model = BoringModel()
model.train(True)
with pytest.raises(ValueError, match="only supports 'script' or 'trace'"):
model.to_torchscript(method='temp')
def test_torchscript_with_no_input(tmpdir):
"""Test that an error is thrown when there is no input tensor"""
model = BoringModel()
model.example_input_array = None
with pytest.raises(ValueError, match='requires either `example_inputs` or `model.example_input_array`'):
model.to_torchscript(method='trace')