# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import fsspec import pytest import torch from fsspec.implementations.local import LocalFileSystem from pytorch_lightning.utilities.cloud_io import get_filesystem from tests.helpers import BoringModel from tests.helpers.advanced_models import BasicGAN, ParityModuleRNN from tests.helpers.datamodules import MNISTDataModule from tests.helpers.runif import RunIf @pytest.mark.parametrize("modelclass", [ BoringModel, ParityModuleRNN, BasicGAN, ]) def test_torchscript_input_output(modelclass): """ Test that scripted LightningModule forward works. """ model = modelclass() if isinstance(model, BoringModel): model.example_input_array = torch.randn(5, 32) script = model.to_torchscript() assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) @pytest.mark.parametrize("modelclass", [ BoringModel, ParityModuleRNN, BasicGAN, ]) def test_torchscript_example_input_output_trace(modelclass): """ Test that traced LightningModule forward works with example_input_array """ model = modelclass() if isinstance(model, BoringModel): model.example_input_array = torch.randn(5, 32) script = model.to_torchscript(method='trace') assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(model.example_input_array) script_output = script(model.example_input_array) assert torch.allclose(script_output, model_output) def test_torchscript_input_output_trace(): """ Test that traced LightningModule forward works with example_inputs """ model = BoringModel() example_inputs = torch.randn(1, 32) script = model.to_torchscript(example_inputs=example_inputs, method='trace') assert isinstance(script, torch.jit.ScriptModule) model.eval() with torch.no_grad(): model_output = model(example_inputs) script_output = script(example_inputs) assert torch.allclose(script_output, model_output) @RunIf(min_gpus=1) @pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)]) def test_torchscript_device(device): """ Test that scripted module is on the correct device. """ model = BoringModel().to(device) model.example_input_array = torch.randn(5, 32) script = model.to_torchscript() assert next(script.parameters()).device == device script_output = script(model.example_input_array.to(device)) assert script_output.device == device def test_torchscript_retain_training_state(): """ Test that torchscript export does not alter the training mode of original model. """ model = BoringModel() model.train(True) script = model.to_torchscript() assert model.training assert not script.training model.train(False) _ = model.to_torchscript() assert not model.training assert not script.training @pytest.mark.parametrize("modelclass", [ BoringModel, ParityModuleRNN, BasicGAN, ]) def test_torchscript_properties(tmpdir, modelclass): """ Test that scripted LightningModule has unnecessary methods removed. """ model = modelclass() model.datamodule = MNISTDataModule(tmpdir) script = model.to_torchscript() assert not hasattr(script, "datamodule") assert not hasattr(model, "batch_size") or hasattr(script, "batch_size") assert not hasattr(model, "learning_rate") or hasattr(script, "learning_rate") assert not callable(getattr(script, "training_step", None)) @pytest.mark.parametrize("modelclass", [ BoringModel, ParityModuleRNN, BasicGAN, ]) @RunIf(min_torch="1.5.0") def test_torchscript_save_load(tmpdir, modelclass): """ Test that scripted LightningModule is correctly saved and can be loaded. """ model = modelclass() output_file = str(tmpdir / "model.pt") script = model.to_torchscript(file_path=output_file) loaded_script = torch.jit.load(output_file) assert torch.allclose(next(script.parameters()), next(loaded_script.parameters())) @pytest.mark.parametrize("modelclass", [ BoringModel, ParityModuleRNN, BasicGAN, ]) @RunIf(min_torch="1.5.0") def test_torchscript_save_load_custom_filesystem(tmpdir, modelclass): """ Test that scripted LightningModule is correctly saved and can be loaded with custom filesystems. """ _DUMMY_PRFEIX = "dummy" _PREFIX_SEPARATOR = "://" class DummyFileSystem(LocalFileSystem): ... fsspec.register_implementation(_DUMMY_PRFEIX, DummyFileSystem, clobber=True) model = modelclass() output_file = os.path.join(_DUMMY_PRFEIX, _PREFIX_SEPARATOR, tmpdir, "model.pt") script = model.to_torchscript(file_path=output_file) fs = get_filesystem(output_file) with fs.open(output_file, "rb") as f: loaded_script = torch.jit.load(f) assert torch.allclose(next(script.parameters()), next(loaded_script.parameters())) def test_torchcript_invalid_method(tmpdir): """Test that an error is thrown with invalid torchscript method""" model = BoringModel() model.train(True) with pytest.raises(ValueError, match="only supports 'script' or 'trace'"): model.to_torchscript(method='temp') def test_torchscript_with_no_input(tmpdir): """Test that an error is thrown when there is no input tensor""" model = BoringModel() model.example_input_array = None with pytest.raises(ValueError, match='requires either `example_inputs` or `model.example_input_array`'): model.to_torchscript(method='trace')