lightning/tests/base/model_train_dataloaders.py

52 lines
2.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from tests.helpers.dataloaders import CustomInfDataloader, CustomNotImplementedErrorDataloader
class TrainDataloaderVariations(ABC):
@abstractmethod
def dataloader(self, train: bool, *args, **kwargs):
"""placeholder."""
def train_dataloader(self):
return self.dataloader(train=True)
def train_dataloader__infinite(self):
return CustomInfDataloader(self.dataloader(train=True))
def train_dataloader__not_implemented_error(self):
return CustomNotImplementedErrorDataloader(self.dataloader(train=True))
def train_dataloader__zero_length(self):
dataloader = self.dataloader(train=True)
dataloader.dataset.data = dataloader.dataset.data[:0]
dataloader.dataset.targets = dataloader.dataset.targets[:0]
return dataloader
def train_dataloader__multiple_mapping(self):
"""Return a mapping loaders with different lengths."""
# List[DataLoader]
loaders_a_b = [self.dataloader(num_samples=100, train=True), self.dataloader(num_samples=50, train=True)]
loaders_c_d_e = [
self.dataloader(num_samples=50, train=True),
self.dataloader(num_samples=50, train=True),
self.dataloader(num_samples=50, train=True),
]
# Dict[str, List[DataLoader]]
loaders = {"a_b": loaders_a_b, "c_d_e": loaders_c_d_e}
return loaders