# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from tests.helpers.dataloaders import CustomInfDataloader, CustomNotImplementedErrorDataloader class TrainDataloaderVariations(ABC): @abstractmethod def dataloader(self, train: bool, *args, **kwargs): """placeholder.""" def train_dataloader(self): return self.dataloader(train=True) def train_dataloader__infinite(self): return CustomInfDataloader(self.dataloader(train=True)) def train_dataloader__not_implemented_error(self): return CustomNotImplementedErrorDataloader(self.dataloader(train=True)) def train_dataloader__zero_length(self): dataloader = self.dataloader(train=True) dataloader.dataset.data = dataloader.dataset.data[:0] dataloader.dataset.targets = dataloader.dataset.targets[:0] return dataloader def train_dataloader__multiple_mapping(self): """Return a mapping loaders with different lengths.""" # List[DataLoader] loaders_a_b = [self.dataloader(num_samples=100, train=True), self.dataloader(num_samples=50, train=True)] loaders_c_d_e = [ self.dataloader(num_samples=50, train=True), self.dataloader(num_samples=50, train=True), self.dataloader(num_samples=50, train=True), ] # Dict[str, List[DataLoader]] loaders = {"a_b": loaders_a_b, "c_d_e": loaders_c_d_e} return loaders