lightning/docs/source-pytorch/accelerators/gpu_basic.rst

98 lines
3.6 KiB
ReStructuredText

:orphan:
.. _gpu_basic:
GPU training (Basic)
====================
**Audience:** Users looking to save money and run large models faster using single or multiple
----
What is a GPU?
--------------
A Graphics Processing Unit (GPU), is a specialized hardware accelerator designed to speed up mathematical computations used in gaming and deep learning.
----
Train on 1 GPU
--------------
Make sure you're running on a machine with at least one GPU. There's no need to specify any NVIDIA flags
as Lightning will do it for you.
.. testcode::
:skipif: torch.cuda.device_count() < 1
trainer = Trainer(accelerator="gpu", devices=1)
----------------
.. _multi_gpu:
Train on multiple GPUs
----------------------
To use multiple GPUs, set the number of devices in the Trainer or the index of the GPUs.
.. code::
trainer = Trainer(accelerator="gpu", devices=4)
Choosing GPU devices
^^^^^^^^^^^^^^^^^^^^
You can select the GPU devices using ranges, a list of indices or a string containing
a comma separated list of GPU ids:
.. testsetup::
k = 1
.. testcode::
:skipif: torch.cuda.device_count() < 2
# DEFAULT (int) specifies how many GPUs to use per node
Trainer(accelerator="gpu", devices=k)
# Above is equivalent to
Trainer(accelerator="gpu", devices=list(range(k)))
# Specify which GPUs to use (don't use when running on cluster)
Trainer(accelerator="gpu", devices=[0, 1])
# Equivalent using a string
Trainer(accelerator="gpu", devices="0, 1")
# To use all available GPUs put -1 or '-1'
# equivalent to list(range(torch.cuda.device_count()))
Trainer(accelerator="gpu", devices=-1)
The table below lists examples of possible input formats and how they are interpreted by Lightning.
+------------------+-----------+---------------------+---------------------------------+
| `devices` | Type | Parsed | Meaning |
+==================+===========+=====================+=================================+
| 3 | int | [0, 1, 2] | first 3 GPUs |
+------------------+-----------+---------------------+---------------------------------+
| -1 | int | [0, 1, 2, ...] | all available GPUs |
+------------------+-----------+---------------------+---------------------------------+
| [0] | list | [0] | GPU 0 |
+------------------+-----------+---------------------+---------------------------------+
| [1, 3] | list | [1, 3] | GPUs 1 and 3 |
+------------------+-----------+---------------------+---------------------------------+
| "3" | str | [0, 1, 2] | first 3 GPUs |
+------------------+-----------+---------------------+---------------------------------+
| "1, 3" | str | [1, 3] | GPUs 1 and 3 |
+------------------+-----------+---------------------+---------------------------------+
| "-1" | str | [0, 1, 2, ...] | all available GPUs |
+------------------+-----------+---------------------+---------------------------------+
.. note::
When specifying number of ``devices`` as an integer ``devices=k``, setting the trainer flag
``auto_select_gpus=True`` will automatically help you find ``k`` GPUs that are not
occupied by other processes. This is especially useful when GPUs are configured
to be in "exclusive mode", such that only one process at a time can access them.
For more details see the :doc:`trainer guide <../common/trainer>`.