:orphan: .. _gpu_basic: GPU training (Basic) ==================== **Audience:** Users looking to save money and run large models faster using single or multiple ---- What is a GPU? -------------- A Graphics Processing Unit (GPU), is a specialized hardware accelerator designed to speed up mathematical computations used in gaming and deep learning. ---- Train on 1 GPU -------------- Make sure you're running on a machine with at least one GPU. There's no need to specify any NVIDIA flags as Lightning will do it for you. .. testcode:: :skipif: torch.cuda.device_count() < 1 trainer = Trainer(accelerator="gpu", devices=1) ---------------- .. _multi_gpu: Train on multiple GPUs ---------------------- To use multiple GPUs, set the number of devices in the Trainer or the index of the GPUs. .. code:: trainer = Trainer(accelerator="gpu", devices=4) Choosing GPU devices ^^^^^^^^^^^^^^^^^^^^ You can select the GPU devices using ranges, a list of indices or a string containing a comma separated list of GPU ids: .. testsetup:: k = 1 .. testcode:: :skipif: torch.cuda.device_count() < 2 # DEFAULT (int) specifies how many GPUs to use per node Trainer(accelerator="gpu", devices=k) # Above is equivalent to Trainer(accelerator="gpu", devices=list(range(k))) # Specify which GPUs to use (don't use when running on cluster) Trainer(accelerator="gpu", devices=[0, 1]) # Equivalent using a string Trainer(accelerator="gpu", devices="0, 1") # To use all available GPUs put -1 or '-1' # equivalent to list(range(torch.cuda.device_count())) Trainer(accelerator="gpu", devices=-1) The table below lists examples of possible input formats and how they are interpreted by Lightning. +------------------+-----------+---------------------+---------------------------------+ | `devices` | Type | Parsed | Meaning | +==================+===========+=====================+=================================+ | 3 | int | [0, 1, 2] | first 3 GPUs | +------------------+-----------+---------------------+---------------------------------+ | -1 | int | [0, 1, 2, ...] | all available GPUs | +------------------+-----------+---------------------+---------------------------------+ | [0] | list | [0] | GPU 0 | +------------------+-----------+---------------------+---------------------------------+ | [1, 3] | list | [1, 3] | GPUs 1 and 3 | +------------------+-----------+---------------------+---------------------------------+ | "3" | str | [0, 1, 2] | first 3 GPUs | +------------------+-----------+---------------------+---------------------------------+ | "1, 3" | str | [1, 3] | GPUs 1 and 3 | +------------------+-----------+---------------------+---------------------------------+ | "-1" | str | [0, 1, 2, ...] | all available GPUs | +------------------+-----------+---------------------+---------------------------------+ .. note:: When specifying number of ``devices`` as an integer ``devices=k``, setting the trainer flag ``auto_select_gpus=True`` will automatically help you find ``k`` GPUs that are not occupied by other processes. This is especially useful when GPUs are configured to be in "exclusive mode", such that only one process at a time can access them. For more details see the :doc:`trainer guide <../common/trainer>`.