lightning/tests/test_models.py

315 lines
8.0 KiB
Python

import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel
from argparse import Namespace
from test_tube import Experiment
from pytorch_lightning.callbacks import ModelCheckpoint
import numpy as np
import warnings
import torch
import os
import shutil
SEED = 2334
torch.manual_seed(SEED)
np.random.seed(SEED)
# ------------------------------------------------------------------------
# TESTS
# ------------------------------------------------------------------------
def test_cpu_model():
"""
Make sure model trains on CPU
:return:
"""
save_dir = init_save_dir()
model, hparams = get_model()
trainer = Trainer(
progress_bar=False,
experiment=get_exp(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'cpu model failed to complete'
assert_ok_acc(trainer)
clear_save_dir()
def test_single_gpu_model():
"""
Make sure single GPU works (DP mode)
:return:
"""
if not torch.cuda.is_available():
warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test')
return
save_dir = init_save_dir()
model, hparams = get_model()
trainer = Trainer(
progress_bar=False,
experiment=get_exp(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4,
gpus=[0]
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'single gpu model failed to complete'
assert_ok_acc(trainer)
clear_save_dir()
def test_multi_gpu_model_dp():
"""
Make sure DP works
:return:
"""
if not torch.cuda.is_available():
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test')
return
if not torch.cuda.device_count() > 1:
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
return
save_dir = init_save_dir()
model, hparams = get_model()
trainer = Trainer(
progress_bar=False,
experiment=get_exp(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4,
gpus=[0, 1]
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'multi-gpu dp model failed to complete'
assert_ok_acc(trainer)
clear_save_dir()
def test_amp_gpu_dp():
"""
Make sure DP + AMP work
:return:
"""
if not torch.cuda.is_available():
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test')
return
if not torch.cuda.device_count() > 1:
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
return
save_dir = init_save_dir()
model, hparams = get_model()
trainer = Trainer(
progress_bar=False,
experiment=get_exp(),
max_nb_epochs=1,
train_percent_check=0.4,
gpus=[0, 1],
distributed_backend='dp',
use_amp=True
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + gpu model failed to complete'
clear_save_dir()
def test_multi_gpu_model_ddp():
"""
Make sure DDP works
:return:
"""
if not torch.cuda.is_available():
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test')
return
if not torch.cuda.device_count() > 1:
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
return
save_dir = init_save_dir()
model, hparams = get_model()
trainer = Trainer(
progress_bar=False,
experiment=get_exp(),
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4,
gpus=[0, 1],
distributed_backend='ddp'
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'multi-gpu ddp model failed to complete'
clear_save_dir()
def test_amp_gpu_ddp():
"""
Make sure DDP + AMP work
:return:
"""
if not torch.cuda.is_available():
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
return
if not torch.cuda.device_count() > 1:
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
return
save_dir = init_save_dir()
model, hparams = get_model()
# exp file to get meta
exp = get_exp(False)
exp.argparse(hparams)
exp.save()
# exp file to get weights
checkpoint = ModelCheckpoint(save_dir)
trainer = Trainer(
checkpoint_callback=checkpoint,
progress_bar=True,
experiment=exp,
max_nb_epochs=1,
train_percent_check=0.7,
val_percent_check=0.1,
gpus=[0, 1],
distributed_backend='ddp',
use_amp=True
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test model loading
pretrained_model = load_model(exp, save_dir)
# test model preds
run_prediction(model.test_dataloader, pretrained_model)
clear_save_dir()
# ------------------------------------------------------------------------
# UTILS
# ------------------------------------------------------------------------
def get_model():
# set up model with these hyperparams
root_dir = os.path.dirname(os.path.realpath(__file__))
hparams = Namespace(**{'drop_prob': 0.2,
'batch_size': 32,
'in_features': 28*28,
'learning_rate': 0.001*8,
'optimizer_name': 'adam',
'data_root': os.path.join(root_dir, 'mnist'),
'out_features': 10,
'hidden_dim': 1000})
model = LightningTemplateModel(hparams)
return model, hparams
def get_exp(debug=True):
# set up exp object without actually saving logs
root_dir = os.path.dirname(os.path.realpath(__file__))
exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir')
return exp
def init_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir, exist_ok=True)
return save_dir
def clear_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
def load_model(exp, save_dir):
# load trained model
tags_path = exp.get_data_path(exp.name, exp.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x]
weights_dir = os.path.join(save_dir, checkpoints[0])
trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True)
assert trained_model is not None, 'loading model failed'
return trained_model
def run_prediction(dataloader, trained_model):
# run prediction on 1 batch
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
y_hat = trained_model(x)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
val_acc = val_acc.item()
print(val_acc)
assert val_acc > 0.70, f'this model is expected to get > 0.7 in test set (it got {val_acc})'
def assert_ok_acc(trainer):
# this model should get 0.80+ acc
acc = trainer.tng_tqdm_dic['val_acc']
assert acc > 0.70, f'model failed to get expected 0.70 validation accuracy. Got: {acc}'
if __name__ == '__main__':
pytest.main([__file__])