import pytest from pytorch_lightning import Trainer from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel from argparse import Namespace from test_tube import Experiment from pytorch_lightning.callbacks import ModelCheckpoint import numpy as np import warnings import torch import os import shutil SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) # ------------------------------------------------------------------------ # TESTS # ------------------------------------------------------------------------ def test_cpu_model(): """ Make sure model trains on CPU :return: """ save_dir = init_save_dir() model, hparams = get_model() trainer = Trainer( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4 ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'cpu model failed to complete' assert_ok_acc(trainer) clear_save_dir() def test_single_gpu_model(): """ Make sure single GPU works (DP mode) :return: """ if not torch.cuda.is_available(): warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test') return save_dir = init_save_dir() model, hparams = get_model() trainer = Trainer( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4, gpus=[0] ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'single gpu model failed to complete' assert_ok_acc(trainer) clear_save_dir() def test_multi_gpu_model_dp(): """ Make sure DP works :return: """ if not torch.cuda.is_available(): warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test') return save_dir = init_save_dir() model, hparams = get_model() trainer = Trainer( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4, gpus=[0, 1] ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'multi-gpu dp model failed to complete' assert_ok_acc(trainer) clear_save_dir() def test_amp_gpu_dp(): """ Make sure DP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test') return save_dir = init_save_dir() model, hparams = get_model() trainer = Trainer( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, gpus=[0, 1], distributed_backend='dp', use_amp=True ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + gpu model failed to complete' clear_save_dir() def test_multi_gpu_model_ddp(): """ Make sure DDP works :return: """ if not torch.cuda.is_available(): warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test') return save_dir = init_save_dir() model, hparams = get_model() trainer = Trainer( progress_bar=False, experiment=get_exp(), max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.4, gpus=[0, 1], distributed_backend='ddp' ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'multi-gpu ddp model failed to complete' clear_save_dir() def test_amp_gpu_ddp(): """ Make sure DDP + AMP work :return: """ if not torch.cuda.is_available(): warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test') return if not torch.cuda.device_count() > 1: warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test') return save_dir = init_save_dir() model, hparams = get_model() # exp file to get meta exp = get_exp(False) exp.argparse(hparams) exp.save() # exp file to get weights checkpoint = ModelCheckpoint(save_dir) trainer = Trainer( checkpoint_callback=checkpoint, progress_bar=True, experiment=exp, max_nb_epochs=1, train_percent_check=0.7, val_percent_check=0.1, gpus=[0, 1], distributed_backend='ddp', use_amp=True ) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(exp, save_dir) # test model preds run_prediction(model.test_dataloader, pretrained_model) clear_save_dir() # ------------------------------------------------------------------------ # UTILS # ------------------------------------------------------------------------ def get_model(): # set up model with these hyperparams root_dir = os.path.dirname(os.path.realpath(__file__)) hparams = Namespace(**{'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28*28, 'learning_rate': 0.001*8, 'optimizer_name': 'adam', 'data_root': os.path.join(root_dir, 'mnist'), 'out_features': 10, 'hidden_dim': 1000}) model = LightningTemplateModel(hparams) return model, hparams def get_exp(debug=True): # set up exp object without actually saving logs root_dir = os.path.dirname(os.path.realpath(__file__)) exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir') return exp def init_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) os.makedirs(save_dir, exist_ok=True) return save_dir def clear_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) def load_model(exp, save_dir): # load trained model tags_path = exp.get_data_path(exp.name, exp.version) tags_path = os.path.join(tags_path, 'meta_tags.csv') checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x] weights_dir = os.path.join(save_dir, checkpoints[0]) trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True) assert trained_model is not None, 'loading model failed' return trained_model def run_prediction(dataloader, trained_model): # run prediction on 1 batch for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) y_hat = trained_model(x) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) val_acc = val_acc.item() print(val_acc) assert val_acc > 0.70, f'this model is expected to get > 0.7 in test set (it got {val_acc})' def assert_ok_acc(trainer): # this model should get 0.80+ acc acc = trainer.tng_tqdm_dic['val_acc'] assert acc > 0.70, f'model failed to get expected 0.70 validation accuracy. Got: {acc}' if __name__ == '__main__': pytest.main([__file__])