Build and train PyTorch models and connect them to the ML lifecycle using Lightning App templates, without handling DIY infrastructure, cost management, scaling, and other headaches.
e44644e4ba | ||
---|---|---|
docs | ||
pytorch_lightning | ||
.gitignore | ||
COPYING | ||
MANIFEST.in | ||
README.md | ||
mkdocs.yml | ||
pyproject.toml | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
update.sh |
README.md
Pytorch Lightning
The Keras for ML researchers using PyTorch. More control. Less boilerplate.
pip install pytorch-lightning
Docs
What is it?
Keras is too abstract for researchers. Lightning abstracts the full training loop but gives you control in the critical points.
Why do I want to use lightning?
Because you want to use best practices and get gpu training, multi-node training, checkpointing, mixed-precision, etc... for free.
To use lightning do 2 things:
- Define a trainer (which will run ALL your models).
- Define a model.
What are some key lightning features?
- Automatic training loop
# define what happens for training here
def training_step(self, data_batch, batch_nb):
x, y = data_batch
out = self.forward(x)
loss = my_loss(out, y)
return {'loss': loss}
- Automatic validation loop
# define what happens for validation here
def validation_step(self, data_batch, batch_nb): x, y = data_batch
out = self.forward(x)
loss = my_loss(out, y)
return {'loss': loss}
- Automatic early stopping
callback = EarlyStopping(...)
Trainer(early_stopping=callback)
- Learning rate annealing
# anneal at 100 and 200 epochs
Trainer(lr_scheduler_milestones=[100, 200])
- 16 bit precision training (must have apex installed)
Trainer(use_amp=True, amp_level='O2')
- multi-gpu training
# train on 4 gpus
Trainer(gpus=[0, 1, 2, 3])
- Automatic checkpointing
# do 3 things:
# 1
Trainer(checkpoint_callback=ModelCheckpoint)
# 2 return what to save in a checkpoint
def get_save_dict(self):
return {'state_dict': self.state_dict()}
# 3 use the checkpoint to reset your model state
def load_model_specific(self, checkpoint):
self.load_state_dict(checkpoint['state_dict'])
- Log all details of your experiment (model params, code snapshot, etc...)
from test_tube import Experiment
exp = Experiment(...)
Trainer(experiment=exp)
- Run grid-search on cluster
from test_tube import Experiment, SlurmCluster, HyperOptArgumentParser
def training_fx(hparams, cluster, _):
# hparams are local params
model = MyModel()
trainer = Trainer(...)
trainer.fit(model)
# grid search number of layers
parser = HyperOptArgumentParser(strategy='grid_search')
parser.opt_list('--layers', default=5, type=int, options=[1, 5, 10, 20, 50])
hyperparams = parser.parse_args()
cluster = SlurmCluster(hyperparam_optimizer=hyperparams)
cluster.optimize_parallel_cluster_gpu(training_fx)
Demo
# install lightning
pip install pytorch-lightning
# clone lightning for the demo
git clone https://github.com/williamFalcon/pytorch-lightning.git
cd pytorch-lightning/docs/source/examples
# run demo (on cpu)
python fully_featured_trainer.py
Without changing the model AT ALL, you can run the model on a single gpu, over multiple gpus, or over multiple nodes.
# run a grid search on two gpus
python fully_featured_trainer.py --gpus "0;1"
# run single model on multiple gpus
python fully_featured_trainer.py --gpus "0;1" --interactive