added docs page
This commit is contained in:
parent
246dc6978c
commit
fa3bebce1d
182
README.md
182
README.md
|
@ -143,186 +143,4 @@ python fully_featured_trainer.py --gpus "0;1"
|
|||
python fully_featured_trainer.py --gpus "0;1" --interactive
|
||||
```
|
||||
|
||||
#### Basic trainer example
|
||||
See [this demo](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/examples/fully_featured_trainer.py) for a more robust trainer example.
|
||||
|
||||
```python
|
||||
import os
|
||||
import sys
|
||||
|
||||
from test_tube import HyperOptArgumentParser, Experiment
|
||||
from pytorch_lightning.models.trainer import Trainer
|
||||
from pytorch_lightning.utils.arg_parse import add_default_args
|
||||
from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
|
||||
from demo.example_model import ExampleModel
|
||||
|
||||
|
||||
def main(hparams):
|
||||
"""
|
||||
Main training routine specific for this project
|
||||
:param hparams:
|
||||
:return:
|
||||
"""
|
||||
# init experiment
|
||||
exp = Experiment(
|
||||
name=hparams.tt_name,
|
||||
debug=hparams.debug,
|
||||
save_dir=hparams.tt_save_path,
|
||||
version=hparams.hpc_exp_number,
|
||||
autosave=False,
|
||||
description=hparams.tt_description
|
||||
)
|
||||
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
|
||||
|
||||
# build model
|
||||
model = ExampleModel(hparams)
|
||||
|
||||
# callbacks
|
||||
early_stop = EarlyStopping(monitor='val_acc', patience=3, mode='min', verbose=True)
|
||||
checkpoint = ModelCheckpoint(filepath=model_save_path, save_function=None, save_best_only=True, verbose=True, monitor='val_acc', mode='min')
|
||||
|
||||
# configure trainer
|
||||
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint, early_stop_callback=early_stop)
|
||||
|
||||
# train model
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# use default args given by lightning
|
||||
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
|
||||
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
|
||||
add_default_args(parent_parser, root_dir)
|
||||
|
||||
# allow model to overwrite or extend args
|
||||
parser = ExampleModel.add_model_specific_args(parent_parser)
|
||||
hyperparams = parser.parse_args()
|
||||
|
||||
# train model
|
||||
main(hyperparams)
|
||||
|
||||
```
|
||||
|
||||
#### Basic model example
|
||||
Here we only show the method signatures. It's up to you to define the content.
|
||||
|
||||
```python
|
||||
from torch import nn
|
||||
|
||||
class My_Model(RootModule):
|
||||
def __init__(self):
|
||||
# define model
|
||||
self.l1 = nn.Linear(200, 10)
|
||||
|
||||
# ---------------
|
||||
# TRAINING
|
||||
def training_step(self, data_batch):
|
||||
x, y = data_batch
|
||||
y_hat = self.l1(x)
|
||||
loss = some_loss(y_hat)
|
||||
|
||||
return loss_val, {'train_loss': loss}
|
||||
|
||||
def validation_step(self, data_batch):
|
||||
x, y = data_batch
|
||||
y_hat = self.l1(x)
|
||||
loss = some_loss(y_hat)
|
||||
|
||||
return loss_val, {'val_loss': loss}
|
||||
|
||||
def validation_end(self, outputs):
|
||||
total_accs = []
|
||||
|
||||
for output in outputs:
|
||||
total_accs.append(output['val_acc'].item())
|
||||
|
||||
# return a dict
|
||||
return {'total_acc': np.mean(total_accs)}
|
||||
|
||||
# ---------------
|
||||
# SAVING
|
||||
def get_save_dict(self):
|
||||
# lightning saves for you. Here's your chance to say what you want to save
|
||||
checkpoint = {'state_dict': self.state_dict()}
|
||||
|
||||
return checkpoint
|
||||
|
||||
def load_model_specific(self, checkpoint):
|
||||
# lightning loads for you. Here's your chance to say what you want to load
|
||||
self.load_state_dict(checkpoint['state_dict'])
|
||||
|
||||
# ---------------
|
||||
# TRAINING CONFIG
|
||||
def configure_optimizers(self):
|
||||
# give lightning the list of optimizers you want to use.
|
||||
# lightning will call automatically
|
||||
optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer')
|
||||
return [optimizer]
|
||||
|
||||
@property
|
||||
def tng_dataloader(self):
|
||||
return pytorch_dataloader('train')
|
||||
|
||||
@property
|
||||
def val_dataloader(self):
|
||||
return pytorch_dataloader('val')
|
||||
|
||||
@property
|
||||
def test_dataloader(self):
|
||||
return pytorch_dataloader('test')
|
||||
|
||||
# ---------------
|
||||
# MODIFY YOUR COMMAND LINE ARGS
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
|
||||
parser.add_argument('--out_features', default=20)
|
||||
return parser
|
||||
```
|
||||
|
||||
|
||||
### Details
|
||||
|
||||
#### Model definition
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict |
|
||||
| validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict |
|
||||
| validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging |
|
||||
| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
|
||||
|
||||
#### Model training
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| configure_optimizers | called during training setup | None | list: optimizers you want to use |
|
||||
| tng_dataloader | called during training | None | pytorch dataloader |
|
||||
| val_dataloader | called during validation | None | pytorch dataloader |
|
||||
| test_dataloader | called during testing | None | pytorch dataloader |
|
||||
| add_model_specific_args | called with args you defined in your main. This lets you tailor args for each model and keep main the same | argparse | argparse |
|
||||
|
||||
#### Model Saving/Loading
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
|
||||
| load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want |
|
||||
|
||||
## Optional model hooks.
|
||||
Add these to the model whenever you want to configure training behavior.
|
||||
|
||||
|
||||
### Model lifecycle hooks
|
||||
Use these hooks to customize functionality
|
||||
|
||||
| Method | Purpose | Input | Output | Required |
|
||||
|---|---|---|---|---|
|
||||
| on_batch_start() | called right before the batch starts | - | - | N |
|
||||
| on_batch_end() | called right after the batch ends | - | - | N |
|
||||
| on_epoch_start() | called right before the epoch starts | - | - | N |
|
||||
| on_epoch_end() | called right afger the epoch ends | - | - | N |
|
||||
| on_pre_performance_check() | called right before the performance check starts | - | - | N |
|
||||
| on_post_performance_check() | called right after the batch starts | - | - | N |
|
||||
|
|
Loading…
Reference in New Issue