lightning/docs/source/common/progress_bar.rst

139 lines
5.0 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
.. _progress_bar:
Progress Bar
============
Lightning supports two different types of progress bars (`tqdm <https://github.com/tqdm/tqdm>`_ and `rich <https://github.com/Textualize/rich>`_). :class:`~pytorch_lightning.callbacks.TQDMProgressBar` is used by default,
but you can override it by passing a custom :class:`~pytorch_lightning.callbacks.TQDMProgressBar` or :class:`~pytorch_lightning.callbacks.RichProgressBar` to the ``callbacks`` argument of the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
You could also use the :class:`~pytorch_lightning.callbacks.ProgressBarBase` class to implement your own progress bar.
-------------
TQDMProgressBar
---------------
The :class:`~pytorch_lightning.callbacks.TQDMProgressBar` uses the `tqdm <https://github.com/tqdm/tqdm>`_ library internally and is the default progress bar used by Lightning.
It prints to ``stdout`` and shows up to four different bars:
- **sanity check progress:** the progress during the sanity check run
- **main progress:** shows training + validation progress combined. It also accounts for multiple validation runs during training when :paramref:`~pytorch_lightning.trainer.trainer.Trainer.val_check_interval` is used.
- **validation progress:** only visible during validation; shows total progress over all validation datasets.
- **test progress:** only active when testing; shows total progress over all test datasets.
For infinite datasets, the progress bar never ends.
You can update ``refresh_rate`` (rate (number of batches) at which the progress bar get updated) for :class:`~pytorch_lightning.callbacks.TQDMProgressBar` by:
.. code-block:: python
from pytorch_lightning.callbacks import TQDMProgressBar
trainer = Trainer(callbacks=[TQDMProgressBar(refresh_rate=10)])
If you want to customize the default :class:`~pytorch_lightning.callbacks.TQDMProgressBar` used by Lightning, you can override
specific methods of the callback class and pass your custom implementation to the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. code-block:: python
class LitProgressBar(TQDMProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
bar.set_description("running validation...")
return bar
trainer = Trainer(callbacks=[LitProgressBar()])
.. seealso::
- :class:`~pytorch_lightning.callbacks.TQDMProgressBar` docs.
- `tqdm library <https://github.com/tqdm/tqdm>`__
----------------
RichProgressBar
---------------
`Rich <https://github.com/Textualize/rich>`_ is a Python library for rich text and beautiful formatting in the terminal.
To use the :class:`~pytorch_lightning.callbacks.RichProgressBar` as your progress bar, first install the package:
.. code-block:: bash
pip install rich
Then configure the callback and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.callbacks import RichProgressBar
trainer = Trainer(callbacks=[RichProgressBar()])
Customize the theme for your :class:`~pytorch_lightning.callbacks.RichProgressBar` like this:
.. code-block:: python
from pytorch_lightning.callbacks import RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
# create your own theme!
progress_bar = RichProgressBar(
theme=RichProgressBarTheme(
description="green_yellow",
progress_bar="green1",
progress_bar_finished="green1",
progress_bar_pulse="#6206E0",
batch_progress="green_yellow",
time="grey82",
processing_speed="grey82",
metrics="grey82",
)
)
trainer = Trainer(callbacks=progress_bar)
You can customize the components used within :class:`~pytorch_lightning.callbacks.RichProgressBar` with ease by overriding the
:func:`~pytorch_lightning.callbacks.RichProgressBar.configure_columns` method.
.. code-block:: python
from rich.progress import TextColumn
custom_column = TextColumn("[progress.description]Custom Rich Progress Bar!")
class CustomRichProgressBar(RichProgressBar):
def configure_columns(self, trainer):
return [custom_column]
progress_bar = CustomRichProgressBar()
If you wish for a new progress bar to be displayed at the end of every epoch, you should enable
:paramref:`RichProgressBar.leave <pytorch_lightning.callbacks.RichProgressBar.leave>` by passing ``True``
.. code-block:: python
from pytorch_lightning.callbacks import RichProgressBar
trainer = Trainer(callbacks=[RichProgressBar(leave=True)])
.. seealso::
- :class:`~pytorch_lightning.callbacks.RichProgressBar` docs.
- :class:`~pytorch_lightning.callbacks.RichModelSummary` docs to customize the model summary table.
- `Rich library <https://github.com/Textualize/rich>`__.
.. note::
Progress bar is automatically enabled with the Trainer, and to disable it, one should do this:
.. code-block:: python
trainer = Trainer(enable_progress_bar=False)