.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer .. _progress_bar: Progress Bar ============ Lightning supports two different types of progress bars (`tqdm `_ and `rich `_). :class:`~pytorch_lightning.callbacks.TQDMProgressBar` is used by default, but you can override it by passing a custom :class:`~pytorch_lightning.callbacks.TQDMProgressBar` or :class:`~pytorch_lightning.callbacks.RichProgressBar` to the ``callbacks`` argument of the :class:`~pytorch_lightning.trainer.trainer.Trainer`. You could also use the :class:`~pytorch_lightning.callbacks.ProgressBarBase` class to implement your own progress bar. ------------- TQDMProgressBar --------------- The :class:`~pytorch_lightning.callbacks.TQDMProgressBar` uses the `tqdm `_ library internally and is the default progress bar used by Lightning. It prints to ``stdout`` and shows up to four different bars: - **sanity check progress:** the progress during the sanity check run - **main progress:** shows training + validation progress combined. It also accounts for multiple validation runs during training when :paramref:`~pytorch_lightning.trainer.trainer.Trainer.val_check_interval` is used. - **validation progress:** only visible during validation; shows total progress over all validation datasets. - **test progress:** only active when testing; shows total progress over all test datasets. For infinite datasets, the progress bar never ends. You can update ``refresh_rate`` (rate (number of batches) at which the progress bar get updated) for :class:`~pytorch_lightning.callbacks.TQDMProgressBar` by: .. code-block:: python from pytorch_lightning.callbacks import TQDMProgressBar trainer = Trainer(callbacks=[TQDMProgressBar(refresh_rate=10)]) If you want to customize the default :class:`~pytorch_lightning.callbacks.TQDMProgressBar` used by Lightning, you can override specific methods of the callback class and pass your custom implementation to the :class:`~pytorch_lightning.trainer.trainer.Trainer`. .. code-block:: python class LitProgressBar(TQDMProgressBar): def init_validation_tqdm(self): bar = super().init_validation_tqdm() bar.set_description("running validation...") return bar trainer = Trainer(callbacks=[LitProgressBar()]) .. seealso:: - :class:`~pytorch_lightning.callbacks.TQDMProgressBar` docs. - `tqdm library `__ ---------------- RichProgressBar --------------- `Rich `_ is a Python library for rich text and beautiful formatting in the terminal. To use the :class:`~pytorch_lightning.callbacks.RichProgressBar` as your progress bar, first install the package: .. code-block:: bash pip install rich Then configure the callback and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. code-block:: python from pytorch_lightning.callbacks import RichProgressBar trainer = Trainer(callbacks=[RichProgressBar()]) Customize the theme for your :class:`~pytorch_lightning.callbacks.RichProgressBar` like this: .. code-block:: python from pytorch_lightning.callbacks import RichProgressBar from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme # create your own theme! progress_bar = RichProgressBar( theme=RichProgressBarTheme( description="green_yellow", progress_bar="green1", progress_bar_finished="green1", progress_bar_pulse="#6206E0", batch_progress="green_yellow", time="grey82", processing_speed="grey82", metrics="grey82", ) ) trainer = Trainer(callbacks=progress_bar) You can customize the components used within :class:`~pytorch_lightning.callbacks.RichProgressBar` with ease by overriding the :func:`~pytorch_lightning.callbacks.RichProgressBar.configure_columns` method. .. code-block:: python from rich.progress import TextColumn custom_column = TextColumn("[progress.description]Custom Rich Progress Bar!") class CustomRichProgressBar(RichProgressBar): def configure_columns(self, trainer): return [custom_column] progress_bar = CustomRichProgressBar() If you wish for a new progress bar to be displayed at the end of every epoch, you should enable :paramref:`RichProgressBar.leave ` by passing ``True`` .. code-block:: python from pytorch_lightning.callbacks import RichProgressBar trainer = Trainer(callbacks=[RichProgressBar(leave=True)]) .. seealso:: - :class:`~pytorch_lightning.callbacks.RichProgressBar` docs. - :class:`~pytorch_lightning.callbacks.RichModelSummary` docs to customize the model summary table. - `Rich library `__. .. note:: Progress bar is automatically enabled with the Trainer, and to disable it, one should do this: .. code-block:: python trainer = Trainer(enable_progress_bar=False)