lightning/pytorch_lightning/core/optimizer.py

165 lines
6.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Any, Callable, Generator, Optional
from weakref import proxy
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
def do_nothing_closure() -> None:
return
class LightningOptimizer:
"""This class is used to wrap the user optimizers and handle properly the backward and optimizer_step logic
across accelerators, AMP, accumulate_grad_batches."""
def __init__(self, optimizer: Optimizer):
# copy most of the `Optimizer` methods into this instance. `__del__` is skipped in case the optimizer has
# implemented custom logic which we would not want to call on destruction of the `LightningOptimizer`
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k not in ("step", "__del__")}
# For Horovod
if hasattr(optimizer, "skip_synchronize"):
self.__class__ = type(
"Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__.__bases__[0]), {}
)
self.skip_synchronize = optimizer.skip_synchronize
self.synchronize = optimizer.synchronize
else:
self.__class__ = type("Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__), {})
self._optimizer = optimizer
self._trainer: Optional["pl.Trainer"] = None
self._optimizer_idx = 0
@property
def optimizer(self) -> Optimizer:
return self._optimizer
def _on_trainer_init(self, trainer: "pl.Trainer") -> None:
self._trainer = proxy(trainer)
for opt_idx, opt in enumerate(trainer.optimizers):
if opt == self._optimizer:
self._optimizer_idx = opt_idx
break
@classmethod
def _to_lightning_optimizer(cls, optimizer: Optimizer, trainer: "pl.Trainer", opt_idx: int) -> "LightningOptimizer":
# apex overrides .step function and need to be wrapped on each step
if trainer.amp_backend is not None and trainer.amp_backend == AMPType.APEX:
lightning_optimizer = cls(optimizer)
lightning_optimizer._on_trainer_init(trainer)
else:
lightning_optimizer = trainer.lightning_optimizers[opt_idx]
return lightning_optimizer
@contextmanager
def toggle_model(self, sync_grad: bool = True) -> Generator[None, None, None]:
"""This function is just a helper for advanced users.
Considering the current optimizer as A and all other optimizers as B.
Toggling means all parameters from B exclusive to A will have ``requires_grad`` set to False.
When performing gradient accumulation, there is no need to perform grad synchronization
during the accumulation phase.
Setting `sync_grad` to False will block this synchronization and improve performance.
"""
# local import here to avoid circular import
from pytorch_lightning.loops.utilities import _block_parallel_sync_behavior
assert self._trainer is not None
lightning_module = self._trainer.lightning_module
with _block_parallel_sync_behavior(self._trainer, block=(not sync_grad)):
lightning_module.toggle_optimizer(self, self._optimizer_idx)
yield
lightning_module.untoggle_optimizer(self._optimizer_idx)
def step(self, closure: Optional[Callable[[], Any]] = None, **kwargs: Any) -> None:
"""Performs a single optimization step (parameter update).
Args:
closure: An optional optimizer_closure.
kwargs: Any additional arguments to the ``optimizer.step()`` call.
Example::
# Scenario for a GAN using manual optimization
def training_step(...):
opt_gen, opt_dis = self.optimizers()
...
# compute generator loss
loss_gen = self.compute_generator_loss(...)
# zero_grad needs to be called before backward
opt_gen.zero_grad()
self.manual_backward(loss_gen)
opt_gen.step()
# compute discriminator loss
loss_dis = self.compute_discriminator_loss(...)
# zero_grad needs to be called before backward
opt_dis.zero_grad()
self.manual_backward(loss_dis)
opt_dis.step()
# A more advanced example
def training_step(self, batch, batch_idx, ...):
opt_gen, opt_dis = self.optimizers()
...
accumulated_grad_batches = batch_idx % 2 == 0
# compute generator loss
def closure_gen():
loss_gen = self.compute_generator_loss(...)
self.manual_backward(loss_gen)
if accumulated_grad_batches:
opt_gen.zero_grad()
with opt_gen.toggle_model(sync_grad=accumulated_grad_batches):
opt_gen.step(closure=closure_gen)
def closure_dis():
loss_dis = self.compute_discriminator_loss(...)
self.manual_backward(loss_dis)
if accumulated_grad_batches:
opt_dis.zero_grad()
with opt_dis.toggle_model(sync_grad=accumulated_grad_batches):
opt_dis.step(closure=closure_dis)
"""
if closure is None:
closure = do_nothing_closure
profiler_action = "optimizer_step_without_closure"
elif not callable(closure):
raise MisconfigurationException("When `optimizer.step(closure)` is called, the closure should be callable")
else:
profiler_action = "optimizer_step_with_closure"
profiler_action += f"_{self._optimizer_idx}"
trainer = self._trainer
assert trainer is not None
with trainer.profiler.profile(profiler_action):
trainer.accelerator.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)