# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Any, Callable, Generator, Optional from weakref import proxy from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.utilities import AMPType from pytorch_lightning.utilities.exceptions import MisconfigurationException def do_nothing_closure() -> None: return class LightningOptimizer: """This class is used to wrap the user optimizers and handle properly the backward and optimizer_step logic across accelerators, AMP, accumulate_grad_batches.""" def __init__(self, optimizer: Optimizer): # copy most of the `Optimizer` methods into this instance. `__del__` is skipped in case the optimizer has # implemented custom logic which we would not want to call on destruction of the `LightningOptimizer` self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k not in ("step", "__del__")} # For Horovod if hasattr(optimizer, "skip_synchronize"): self.__class__ = type( "Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__.__bases__[0]), {} ) self.skip_synchronize = optimizer.skip_synchronize self.synchronize = optimizer.synchronize else: self.__class__ = type("Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__), {}) self._optimizer = optimizer self._trainer: Optional["pl.Trainer"] = None self._optimizer_idx = 0 @property def optimizer(self) -> Optimizer: return self._optimizer def _on_trainer_init(self, trainer: "pl.Trainer") -> None: self._trainer = proxy(trainer) for opt_idx, opt in enumerate(trainer.optimizers): if opt == self._optimizer: self._optimizer_idx = opt_idx break @classmethod def _to_lightning_optimizer(cls, optimizer: Optimizer, trainer: "pl.Trainer", opt_idx: int) -> "LightningOptimizer": # apex overrides .step function and need to be wrapped on each step if trainer.amp_backend is not None and trainer.amp_backend == AMPType.APEX: lightning_optimizer = cls(optimizer) lightning_optimizer._on_trainer_init(trainer) else: lightning_optimizer = trainer.lightning_optimizers[opt_idx] return lightning_optimizer @contextmanager def toggle_model(self, sync_grad: bool = True) -> Generator[None, None, None]: """This function is just a helper for advanced users. Considering the current optimizer as A and all other optimizers as B. Toggling means all parameters from B exclusive to A will have ``requires_grad`` set to False. When performing gradient accumulation, there is no need to perform grad synchronization during the accumulation phase. Setting `sync_grad` to False will block this synchronization and improve performance. """ # local import here to avoid circular import from pytorch_lightning.loops.utilities import _block_parallel_sync_behavior assert self._trainer is not None lightning_module = self._trainer.lightning_module with _block_parallel_sync_behavior(self._trainer, block=(not sync_grad)): lightning_module.toggle_optimizer(self, self._optimizer_idx) yield lightning_module.untoggle_optimizer(self._optimizer_idx) def step(self, closure: Optional[Callable[[], Any]] = None, **kwargs: Any) -> None: """Performs a single optimization step (parameter update). Args: closure: An optional optimizer_closure. kwargs: Any additional arguments to the ``optimizer.step()`` call. Example:: # Scenario for a GAN using manual optimization def training_step(...): opt_gen, opt_dis = self.optimizers() ... # compute generator loss loss_gen = self.compute_generator_loss(...) # zero_grad needs to be called before backward opt_gen.zero_grad() self.manual_backward(loss_gen) opt_gen.step() # compute discriminator loss loss_dis = self.compute_discriminator_loss(...) # zero_grad needs to be called before backward opt_dis.zero_grad() self.manual_backward(loss_dis) opt_dis.step() # A more advanced example def training_step(self, batch, batch_idx, ...): opt_gen, opt_dis = self.optimizers() ... accumulated_grad_batches = batch_idx % 2 == 0 # compute generator loss def closure_gen(): loss_gen = self.compute_generator_loss(...) self.manual_backward(loss_gen) if accumulated_grad_batches: opt_gen.zero_grad() with opt_gen.toggle_model(sync_grad=accumulated_grad_batches): opt_gen.step(closure=closure_gen) def closure_dis(): loss_dis = self.compute_discriminator_loss(...) self.manual_backward(loss_dis) if accumulated_grad_batches: opt_dis.zero_grad() with opt_dis.toggle_model(sync_grad=accumulated_grad_batches): opt_dis.step(closure=closure_dis) """ if closure is None: closure = do_nothing_closure profiler_action = "optimizer_step_without_closure" elif not callable(closure): raise MisconfigurationException("When `optimizer.step(closure)` is called, the closure should be callable") else: profiler_action = "optimizer_step_with_closure" profiler_action += f"_{self._optimizer_idx}" trainer = self._trainer assert trainer is not None with trainer.profiler.profile(profiler_action): trainer.accelerator.optimizer_step(self._optimizer, self._optimizer_idx, closure, **kwargs)