134 lines
4.9 KiB
Python
134 lines
4.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from unittest import mock
|
|
from unittest.mock import ANY, MagicMock, Mock
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from tests_fabric.helpers.runif import RunIf
|
|
from torch.optim import Adam
|
|
|
|
from lightning.fabric.strategies import FSDPStrategy
|
|
from lightning.fabric.strategies.fsdp import _FSDPBackwardSyncControl
|
|
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_12
|
|
|
|
if _TORCH_GREATER_EQUAL_1_12:
|
|
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, FullyShardedDataParallel, MixedPrecision
|
|
|
|
|
|
@mock.patch("lightning.fabric.strategies.fsdp._TORCH_GREATER_EQUAL_1_12", False)
|
|
def test_fsdp_support(*_):
|
|
with pytest.raises(NotImplementedError, match="`FSDPStrategy` is supported from PyTorch v1.12.0"):
|
|
FSDPStrategy()
|
|
|
|
|
|
@RunIf(min_torch="1.12")
|
|
def test_fsdp_custom_mixed_precision():
|
|
"""Test that passing a custom mixed precision config works."""
|
|
config = MixedPrecision()
|
|
strategy = FSDPStrategy(mixed_precision=config)
|
|
assert strategy.mixed_precision_config == config
|
|
|
|
|
|
@RunIf(min_torch="1.12")
|
|
def test_fsdp_cpu_offload():
|
|
"""Test the different ways cpu offloading can be enabled."""
|
|
# bool
|
|
strategy = FSDPStrategy(cpu_offload=True)
|
|
assert strategy.cpu_offload == CPUOffload(offload_params=True)
|
|
|
|
# dataclass
|
|
config = CPUOffload()
|
|
strategy = FSDPStrategy(cpu_offload=config)
|
|
assert strategy.cpu_offload == config
|
|
|
|
|
|
@RunIf(min_torch="1.12")
|
|
def test_fsdp_setup_optimizer_validation():
|
|
"""Test that `setup_optimizer()` validates the param groups and reference to FSDP parameters."""
|
|
module = nn.Linear(2, 2)
|
|
strategy = FSDPStrategy(parallel_devices=[torch.device("cpu")])
|
|
|
|
bad_optimizer = Adam([{"params": [module.weight]}, {"params": [module.bias], "lr": 1e-3}])
|
|
with pytest.raises(ValueError, match="does not support multiple param groups"):
|
|
strategy.setup_optimizer(bad_optimizer)
|
|
|
|
bad_optimizer = Adam(module.parameters())
|
|
with pytest.raises(ValueError, match="The optimizer does not seem to reference any FSDP parameter"):
|
|
strategy.setup_optimizer(bad_optimizer)
|
|
|
|
|
|
@RunIf(min_torch="1.12")
|
|
def test_fsdp_no_backward_sync():
|
|
"""Test that the backward sync control calls `.no_sync()`, and only on a module wrapped in
|
|
FullyShardedDataParallel."""
|
|
|
|
strategy = FSDPStrategy()
|
|
assert isinstance(strategy._backward_sync_control, _FSDPBackwardSyncControl)
|
|
|
|
with pytest.raises(
|
|
TypeError, match="is only possible if the module passed to .* is wrapped in `FullyShardedDataParallel`"
|
|
):
|
|
with strategy._backward_sync_control.no_backward_sync(Mock()):
|
|
pass
|
|
|
|
module = MagicMock(spec=FullyShardedDataParallel)
|
|
with strategy._backward_sync_control.no_backward_sync(module):
|
|
pass
|
|
|
|
module.no_sync.assert_called_once()
|
|
|
|
|
|
@RunIf(min_torch="1.12")
|
|
@mock.patch("lightning.fabric.strategies.fsdp._TORCH_GREATER_EQUAL_1_13", False)
|
|
def test_fsdp_activation_checkpointing_support():
|
|
"""Test that we error out if activation checkpointing requires a newer PyTorch version."""
|
|
with pytest.raises(ValueError, match="Activation checkpointing requires torch >= 1.13.0"):
|
|
FSDPStrategy(activation_checkpointing=Mock())
|
|
|
|
|
|
@RunIf(min_torch="1.13")
|
|
def test_fsdp_activation_checkpointing():
|
|
"""Test that the FSDP strategy can apply activation checkpointing to the given layers."""
|
|
|
|
class Block1(nn.Linear):
|
|
pass
|
|
|
|
class Block2(nn.Linear):
|
|
pass
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer0 = nn.Sequential(Block1(4, 4), Block1(5, 5))
|
|
self.layer1 = Block2(2, 2)
|
|
self.layer2 = nn.Linear(3, 3)
|
|
|
|
strategy = FSDPStrategy(activation_checkpointing=Block1)
|
|
assert strategy._activation_checkpointing == [Block1]
|
|
|
|
strategy = FSDPStrategy(activation_checkpointing=[Block1, Block2])
|
|
assert strategy._activation_checkpointing == [Block1, Block2]
|
|
|
|
strategy._parallel_devices = [torch.device("cuda", 0)]
|
|
with mock.patch(
|
|
"torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel"
|
|
) as fsdp_mock, mock.patch(
|
|
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper.apply_activation_checkpointing"
|
|
) as ckpt_mock:
|
|
strategy.setup_module(Model())
|
|
ckpt_mock.assert_called_with(fsdp_mock(), checkpoint_wrapper_fn=ANY, check_fn=ANY)
|