# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from unittest.mock import ANY, MagicMock, Mock import pytest import torch import torch.nn as nn from tests_fabric.helpers.runif import RunIf from torch.optim import Adam from lightning.fabric.strategies import FSDPStrategy from lightning.fabric.strategies.fsdp import _FSDPBackwardSyncControl from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_12 if _TORCH_GREATER_EQUAL_1_12: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, FullyShardedDataParallel, MixedPrecision @mock.patch("lightning.fabric.strategies.fsdp._TORCH_GREATER_EQUAL_1_12", False) def test_fsdp_support(*_): with pytest.raises(NotImplementedError, match="`FSDPStrategy` is supported from PyTorch v1.12.0"): FSDPStrategy() @RunIf(min_torch="1.12") def test_fsdp_custom_mixed_precision(): """Test that passing a custom mixed precision config works.""" config = MixedPrecision() strategy = FSDPStrategy(mixed_precision=config) assert strategy.mixed_precision_config == config @RunIf(min_torch="1.12") def test_fsdp_cpu_offload(): """Test the different ways cpu offloading can be enabled.""" # bool strategy = FSDPStrategy(cpu_offload=True) assert strategy.cpu_offload == CPUOffload(offload_params=True) # dataclass config = CPUOffload() strategy = FSDPStrategy(cpu_offload=config) assert strategy.cpu_offload == config @RunIf(min_torch="1.12") def test_fsdp_setup_optimizer_validation(): """Test that `setup_optimizer()` validates the param groups and reference to FSDP parameters.""" module = nn.Linear(2, 2) strategy = FSDPStrategy(parallel_devices=[torch.device("cpu")]) bad_optimizer = Adam([{"params": [module.weight]}, {"params": [module.bias], "lr": 1e-3}]) with pytest.raises(ValueError, match="does not support multiple param groups"): strategy.setup_optimizer(bad_optimizer) bad_optimizer = Adam(module.parameters()) with pytest.raises(ValueError, match="The optimizer does not seem to reference any FSDP parameter"): strategy.setup_optimizer(bad_optimizer) @RunIf(min_torch="1.12") def test_fsdp_no_backward_sync(): """Test that the backward sync control calls `.no_sync()`, and only on a module wrapped in FullyShardedDataParallel.""" strategy = FSDPStrategy() assert isinstance(strategy._backward_sync_control, _FSDPBackwardSyncControl) with pytest.raises( TypeError, match="is only possible if the module passed to .* is wrapped in `FullyShardedDataParallel`" ): with strategy._backward_sync_control.no_backward_sync(Mock()): pass module = MagicMock(spec=FullyShardedDataParallel) with strategy._backward_sync_control.no_backward_sync(module): pass module.no_sync.assert_called_once() @RunIf(min_torch="1.12") @mock.patch("lightning.fabric.strategies.fsdp._TORCH_GREATER_EQUAL_1_13", False) def test_fsdp_activation_checkpointing_support(): """Test that we error out if activation checkpointing requires a newer PyTorch version.""" with pytest.raises(ValueError, match="Activation checkpointing requires torch >= 1.13.0"): FSDPStrategy(activation_checkpointing=Mock()) @RunIf(min_torch="1.13") def test_fsdp_activation_checkpointing(): """Test that the FSDP strategy can apply activation checkpointing to the given layers.""" class Block1(nn.Linear): pass class Block2(nn.Linear): pass class Model(nn.Module): def __init__(self): super().__init__() self.layer0 = nn.Sequential(Block1(4, 4), Block1(5, 5)) self.layer1 = Block2(2, 2) self.layer2 = nn.Linear(3, 3) strategy = FSDPStrategy(activation_checkpointing=Block1) assert strategy._activation_checkpointing == [Block1] strategy = FSDPStrategy(activation_checkpointing=[Block1, Block2]) assert strategy._activation_checkpointing == [Block1, Block2] strategy._parallel_devices = [torch.device("cuda", 0)] with mock.patch( "torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel" ) as fsdp_mock, mock.patch( "torch.distributed.algorithms._checkpoint.checkpoint_wrapper.apply_activation_checkpointing" ) as ckpt_mock: strategy.setup_module(Model()) ckpt_mock.assert_called_with(fsdp_mock(), checkpoint_wrapper_fn=ANY, check_fn=ANY)