lightning/pytorch_lightning/trainer/callback_hook.py

304 lines
13 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from copy import deepcopy
from typing import Any, Dict, List, Optional, Type, Union
import torch
from packaging.version import Version
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.types import STEP_OUTPUT
class TrainerCallbackHookMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
callbacks: List[Callback] = []
lightning_module: "pl.LightningModule"
def on_before_accelerator_backend_setup(self) -> None:
"""Called at the beginning of fit (train + validate), validate, test, or predict, or tune."""
for callback in self.callbacks:
callback.on_before_accelerator_backend_setup(self, self.lightning_module)
def on_configure_sharded_model(self) -> None:
"""Called at the beginning of fit (train + validate), validate, test, or predict, or tune."""
for callback in self.callbacks:
callback.on_configure_sharded_model(self, self.lightning_module)
def setup(self, stage: Optional[str]) -> None:
"""Called at the beginning of fit (train + validate), validate, test, or predict, or tune."""
for callback in self.callbacks:
callback.setup(self, self.lightning_module, stage=stage)
def teardown(self, stage: Optional[str] = None) -> None:
"""Called at the end of fit (train + validate), validate, test, or predict, or tune."""
for callback in self.callbacks:
callback.teardown(self, self.lightning_module, stage=stage)
def on_init_start(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_init_start(self)
def on_init_end(self):
"""Called when the trainer initialization ends, model has not yet been set."""
for callback in self.callbacks:
callback.on_init_end(self)
def on_fit_start(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_fit_start(self, self.lightning_module)
def on_fit_end(self):
"""Called when the trainer initialization begins, model has not yet been set."""
for callback in self.callbacks:
callback.on_fit_end(self, self.lightning_module)
def on_sanity_check_start(self):
"""Called when the validation sanity check starts."""
for callback in self.callbacks:
callback.on_sanity_check_start(self, self.lightning_module)
def on_sanity_check_end(self):
"""Called when the validation sanity check ends."""
for callback in self.callbacks:
callback.on_sanity_check_end(self, self.lightning_module)
def on_train_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_train_epoch_start(self, self.lightning_module)
def on_train_epoch_end(self):
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_train_epoch_end(self, self.lightning_module)
def on_validation_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_validation_epoch_start(self, self.lightning_module)
def on_validation_epoch_end(self):
"""Called when the validation epoch ends."""
for callback in self.callbacks:
callback.on_validation_epoch_end(self, self.lightning_module)
def on_test_epoch_start(self):
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_test_epoch_start(self, self.lightning_module)
def on_test_epoch_end(self):
"""Called when the test epoch ends."""
for callback in self.callbacks:
callback.on_test_epoch_end(self, self.lightning_module)
def on_predict_epoch_start(self) -> None:
"""Called when the epoch begins."""
for callback in self.callbacks:
callback.on_predict_epoch_start(self, self.lightning_module)
def on_predict_epoch_end(self, outputs: List[Any]) -> None:
"""Called when the epoch ends."""
for callback in self.callbacks:
callback.on_predict_epoch_end(self, self.lightning_module, outputs)
def on_epoch_start(self):
"""Called when either of train/val/test epoch begins."""
for callback in self.callbacks:
callback.on_epoch_start(self, self.lightning_module)
def on_epoch_end(self):
"""Called when either of train/val/test epoch ends."""
for callback in self.callbacks:
callback.on_epoch_end(self, self.lightning_module)
def on_train_start(self):
"""Called when the train begins."""
for callback in self.callbacks:
callback.on_train_start(self, self.lightning_module)
def on_train_end(self):
"""Called when the train ends."""
for callback in self.callbacks:
callback.on_train_end(self, self.lightning_module)
def on_pretrain_routine_start(self) -> None:
"""Called when the pre-train routine begins."""
for callback in self.callbacks:
callback.on_pretrain_routine_start(self, self.lightning_module)
def on_pretrain_routine_end(self) -> None:
"""Called when the pre-train routine ends."""
for callback in self.callbacks:
callback.on_pretrain_routine_end(self, self.lightning_module)
def on_batch_start(self):
"""Called when the training batch begins."""
for callback in self.callbacks:
callback.on_batch_start(self, self.lightning_module)
def on_batch_end(self):
"""Called when the training batch ends."""
for callback in self.callbacks:
callback.on_batch_end(self, self.lightning_module)
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the training batch begins."""
for callback in self.callbacks:
callback.on_train_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_train_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx):
"""Called when the training batch ends."""
for callback in self.callbacks:
callback.on_train_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the validation batch begins."""
for callback in self.callbacks:
callback.on_validation_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_validation_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx):
"""Called when the validation batch ends."""
for callback in self.callbacks:
callback.on_validation_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
"""Called when the test batch begins."""
for callback in self.callbacks:
callback.on_test_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_test_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx):
"""Called when the test batch ends."""
for callback in self.callbacks:
callback.on_test_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_predict_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
"""Called when the predict batch begins."""
for callback in self.callbacks:
callback.on_predict_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx)
def on_predict_batch_end(self, outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
"""Called when the predict batch ends."""
for callback in self.callbacks:
callback.on_predict_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
def on_validation_start(self):
"""Called when the validation loop begins."""
for callback in self.callbacks:
callback.on_validation_start(self, self.lightning_module)
def on_validation_end(self):
"""Called when the validation loop ends."""
for callback in self.callbacks:
callback.on_validation_end(self, self.lightning_module)
def on_test_start(self):
"""Called when the test begins."""
for callback in self.callbacks:
callback.on_test_start(self, self.lightning_module)
def on_test_end(self):
"""Called when the test ends."""
for callback in self.callbacks:
callback.on_test_end(self, self.lightning_module)
def on_predict_start(self) -> None:
"""Called when predict begins."""
for callback in self.callbacks:
callback.on_predict_start(self, self.lightning_module)
def on_predict_end(self) -> None:
"""Called when predict ends."""
for callback in self.callbacks:
callback.on_predict_end(self, self.lightning_module)
def on_keyboard_interrupt(self):
r"""
.. deprecated:: v1.5
This callback hook was deprecated in v1.5 in favor of `on_exception` and will be removed in v1.7.
Called when any trainer execution is interrupted by KeyboardInterrupt.
"""
for callback in self.callbacks:
callback.on_keyboard_interrupt(self, self.lightning_module)
def on_exception(self, exception: BaseException) -> None:
"""Called when any trainer execution is interrupted by an exception."""
for callback in self.callbacks:
callback.on_exception(self, self.lightning_module, exception)
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> Dict[str, dict]:
"""Called when saving a model checkpoint."""
callback_states = {}
for callback in self.callbacks:
state = callback.on_save_checkpoint(self, self.lightning_module, checkpoint)
if state:
callback_states[callback.state_key] = state
return callback_states
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
"""Called when loading a model checkpoint."""
# Todo: the `callback_states` are dropped with TPUSpawn as they
# can't be saved using `xm.save`
# https://github.com/pytorch/xla/issues/2773
callback_states: Dict[Union[Type, str], Dict] = checkpoint.get("callbacks")
if callback_states is None:
return
is_legacy_ckpt = Version(checkpoint["pytorch-lightning_version"]) < Version("1.5.0dev")
current_callbacks_keys = {cb._legacy_state_key if is_legacy_ckpt else cb.state_key for cb in self.callbacks}
difference = callback_states.keys() - current_callbacks_keys
if difference:
rank_zero_warn(
"Be aware that when using `resume_from_checkpoint`,"
" callbacks used to create the checkpoint need to be provided."
f" Please add the following callbacks: {list(difference)}.",
UserWarning,
)
for callback in self.callbacks:
state = callback_states.get(callback.state_key, callback_states.get(callback._legacy_state_key))
if state:
state = deepcopy(state)
callback.on_load_checkpoint(self, self.lightning_module, state)
def on_before_backward(self, loss: torch.Tensor) -> None:
"""Called before ``loss.backward()``."""
for callback in self.callbacks:
callback.on_before_backward(self, self.lightning_module, loss)
def on_after_backward(self):
"""Called after loss.backward() and before optimizers do anything."""
for callback in self.callbacks:
callback.on_after_backward(self, self.lightning_module)
def on_before_optimizer_step(self, optimizer, optimizer_idx):
"""Called after on_after_backward() once the gradient is accumulated and before optimizer.step()."""
for callback in self.callbacks:
callback.on_before_optimizer_step(self, self.lightning_module, optimizer, optimizer_idx)
def on_before_zero_grad(self, optimizer):
"""Called after optimizer.step() and before optimizer.zero_grad()."""
for callback in self.callbacks:
callback.on_before_zero_grad(self, self.lightning_module, optimizer)