# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from copy import deepcopy from typing import Any, Dict, List, Optional, Type, Union import torch from packaging.version import Version import pytorch_lightning as pl from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.types import STEP_OUTPUT class TrainerCallbackHookMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class callbacks: List[Callback] = [] lightning_module: "pl.LightningModule" def on_before_accelerator_backend_setup(self) -> None: """Called at the beginning of fit (train + validate), validate, test, or predict, or tune.""" for callback in self.callbacks: callback.on_before_accelerator_backend_setup(self, self.lightning_module) def on_configure_sharded_model(self) -> None: """Called at the beginning of fit (train + validate), validate, test, or predict, or tune.""" for callback in self.callbacks: callback.on_configure_sharded_model(self, self.lightning_module) def setup(self, stage: Optional[str]) -> None: """Called at the beginning of fit (train + validate), validate, test, or predict, or tune.""" for callback in self.callbacks: callback.setup(self, self.lightning_module, stage=stage) def teardown(self, stage: Optional[str] = None) -> None: """Called at the end of fit (train + validate), validate, test, or predict, or tune.""" for callback in self.callbacks: callback.teardown(self, self.lightning_module, stage=stage) def on_init_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_init_start(self) def on_init_end(self): """Called when the trainer initialization ends, model has not yet been set.""" for callback in self.callbacks: callback.on_init_end(self) def on_fit_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_start(self, self.lightning_module) def on_fit_end(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_end(self, self.lightning_module) def on_sanity_check_start(self): """Called when the validation sanity check starts.""" for callback in self.callbacks: callback.on_sanity_check_start(self, self.lightning_module) def on_sanity_check_end(self): """Called when the validation sanity check ends.""" for callback in self.callbacks: callback.on_sanity_check_end(self, self.lightning_module) def on_train_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_train_epoch_start(self, self.lightning_module) def on_train_epoch_end(self): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_train_epoch_end(self, self.lightning_module) def on_validation_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_validation_epoch_start(self, self.lightning_module) def on_validation_epoch_end(self): """Called when the validation epoch ends.""" for callback in self.callbacks: callback.on_validation_epoch_end(self, self.lightning_module) def on_test_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_test_epoch_start(self, self.lightning_module) def on_test_epoch_end(self): """Called when the test epoch ends.""" for callback in self.callbacks: callback.on_test_epoch_end(self, self.lightning_module) def on_predict_epoch_start(self) -> None: """Called when the epoch begins.""" for callback in self.callbacks: callback.on_predict_epoch_start(self, self.lightning_module) def on_predict_epoch_end(self, outputs: List[Any]) -> None: """Called when the epoch ends.""" for callback in self.callbacks: callback.on_predict_epoch_end(self, self.lightning_module, outputs) def on_epoch_start(self): """Called when either of train/val/test epoch begins.""" for callback in self.callbacks: callback.on_epoch_start(self, self.lightning_module) def on_epoch_end(self): """Called when either of train/val/test epoch ends.""" for callback in self.callbacks: callback.on_epoch_end(self, self.lightning_module) def on_train_start(self): """Called when the train begins.""" for callback in self.callbacks: callback.on_train_start(self, self.lightning_module) def on_train_end(self): """Called when the train ends.""" for callback in self.callbacks: callback.on_train_end(self, self.lightning_module) def on_pretrain_routine_start(self) -> None: """Called when the pre-train routine begins.""" for callback in self.callbacks: callback.on_pretrain_routine_start(self, self.lightning_module) def on_pretrain_routine_end(self) -> None: """Called when the pre-train routine ends.""" for callback in self.callbacks: callback.on_pretrain_routine_end(self, self.lightning_module) def on_batch_start(self): """Called when the training batch begins.""" for callback in self.callbacks: callback.on_batch_start(self, self.lightning_module) def on_batch_end(self): """Called when the training batch ends.""" for callback in self.callbacks: callback.on_batch_end(self, self.lightning_module) def on_train_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the training batch begins.""" for callback in self.callbacks: callback.on_train_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx) def on_train_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx): """Called when the training batch ends.""" for callback in self.callbacks: callback.on_train_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx) def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the validation batch begins.""" for callback in self.callbacks: callback.on_validation_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx) def on_validation_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx): """Called when the validation batch ends.""" for callback in self.callbacks: callback.on_validation_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx) def on_test_batch_start(self, batch, batch_idx, dataloader_idx): """Called when the test batch begins.""" for callback in self.callbacks: callback.on_test_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx) def on_test_batch_end(self, outputs: STEP_OUTPUT, batch, batch_idx, dataloader_idx): """Called when the test batch ends.""" for callback in self.callbacks: callback.on_test_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx) def on_predict_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """Called when the predict batch begins.""" for callback in self.callbacks: callback.on_predict_batch_start(self, self.lightning_module, batch, batch_idx, dataloader_idx) def on_predict_batch_end(self, outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """Called when the predict batch ends.""" for callback in self.callbacks: callback.on_predict_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx) def on_validation_start(self): """Called when the validation loop begins.""" for callback in self.callbacks: callback.on_validation_start(self, self.lightning_module) def on_validation_end(self): """Called when the validation loop ends.""" for callback in self.callbacks: callback.on_validation_end(self, self.lightning_module) def on_test_start(self): """Called when the test begins.""" for callback in self.callbacks: callback.on_test_start(self, self.lightning_module) def on_test_end(self): """Called when the test ends.""" for callback in self.callbacks: callback.on_test_end(self, self.lightning_module) def on_predict_start(self) -> None: """Called when predict begins.""" for callback in self.callbacks: callback.on_predict_start(self, self.lightning_module) def on_predict_end(self) -> None: """Called when predict ends.""" for callback in self.callbacks: callback.on_predict_end(self, self.lightning_module) def on_keyboard_interrupt(self): r""" .. deprecated:: v1.5 This callback hook was deprecated in v1.5 in favor of `on_exception` and will be removed in v1.7. Called when any trainer execution is interrupted by KeyboardInterrupt. """ for callback in self.callbacks: callback.on_keyboard_interrupt(self, self.lightning_module) def on_exception(self, exception: BaseException) -> None: """Called when any trainer execution is interrupted by an exception.""" for callback in self.callbacks: callback.on_exception(self, self.lightning_module, exception) def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> Dict[str, dict]: """Called when saving a model checkpoint.""" callback_states = {} for callback in self.callbacks: state = callback.on_save_checkpoint(self, self.lightning_module, checkpoint) if state: callback_states[callback.state_key] = state return callback_states def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """Called when loading a model checkpoint.""" # Todo: the `callback_states` are dropped with TPUSpawn as they # can't be saved using `xm.save` # https://github.com/pytorch/xla/issues/2773 callback_states: Dict[Union[Type, str], Dict] = checkpoint.get("callbacks") if callback_states is None: return is_legacy_ckpt = Version(checkpoint["pytorch-lightning_version"]) < Version("1.5.0dev") current_callbacks_keys = {cb._legacy_state_key if is_legacy_ckpt else cb.state_key for cb in self.callbacks} difference = callback_states.keys() - current_callbacks_keys if difference: rank_zero_warn( "Be aware that when using `resume_from_checkpoint`," " callbacks used to create the checkpoint need to be provided." f" Please add the following callbacks: {list(difference)}.", UserWarning, ) for callback in self.callbacks: state = callback_states.get(callback.state_key, callback_states.get(callback._legacy_state_key)) if state: state = deepcopy(state) callback.on_load_checkpoint(self, self.lightning_module, state) def on_before_backward(self, loss: torch.Tensor) -> None: """Called before ``loss.backward()``.""" for callback in self.callbacks: callback.on_before_backward(self, self.lightning_module, loss) def on_after_backward(self): """Called after loss.backward() and before optimizers do anything.""" for callback in self.callbacks: callback.on_after_backward(self, self.lightning_module) def on_before_optimizer_step(self, optimizer, optimizer_idx): """Called after on_after_backward() once the gradient is accumulated and before optimizer.step().""" for callback in self.callbacks: callback.on_before_optimizer_step(self, self.lightning_module, optimizer, optimizer_idx) def on_before_zero_grad(self, optimizer): """Called after optimizer.step() and before optimizer.zero_grad().""" for callback in self.callbacks: callback.on_before_zero_grad(self, self.lightning_module, optimizer)