395 lines
10 KiB
Markdown
395 lines
10 KiB
Markdown
# Lightning module
|
|
[[Github Code](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/root_module/root_module.py)]
|
|
|
|
A lightning module is a strict superclass of nn.Module, it provides a standard interface for the trainer to interact with the model.
|
|
|
|
The easiest thing to do is copy [this template](../../examples/new_project_templates/lightning_module_template.py) and modify accordingly.
|
|
|
|
Otherwise, to Define a Lightning Module, implement the following methods:
|
|
|
|
**Required**:
|
|
|
|
- [training_step](LightningModule.md#training_step)
|
|
- [validation_step](LightningModule.md#validation_step)
|
|
- [validation_end](LightningModule.md#validation_end)
|
|
|
|
- [configure_optimizers](LightningModule.md#configure_optimizers)
|
|
- [get_save_dict](LightningModule.md#get_save_dict)
|
|
- [load_model_specific](LightningModule.md#load_model_specific)
|
|
|
|
- [tng_dataloader](LightningModule.md#tng_dataloader)
|
|
- [tng_dataloader](LightningModule.md#tng_dataloader)
|
|
- [test_dataloader](LightningModule.md#test_dataloader)
|
|
|
|
**Optional**:
|
|
|
|
- [update_tng_log_metrics](LightningModule.md#update_tng_log_metrics)
|
|
- [add_model_specific_args](LightningModule.md#add_model_specific_args)
|
|
|
|
---
|
|
|
|
### training_step
|
|
|
|
``` {.python}
|
|
def training_step(self, data_batch, batch_nb)
|
|
```
|
|
|
|
In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something specific to your model.
|
|
|
|
**Params**
|
|
|
|
| Param | description |
|
|
|---|---|
|
|
| data_batch | The output of your dataloader. A tensor, tuple or list |
|
|
| batch_nb | Integer displaying which batch this is |
|
|
|
|
**Return**
|
|
|
|
Dictionary or OrderedDict
|
|
|
|
| key | value | is required |
|
|
|---|---|---|
|
|
| loss | tensor scalar | Y |
|
|
| prog | Dict for progress bar display. Must have only tensors | N |
|
|
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def training_step(self, data_batch, batch_nb):
|
|
x, y, z = data_batch
|
|
|
|
# implement your own
|
|
out = self.forward(x)
|
|
loss = self.loss(out, x)
|
|
|
|
output = {
|
|
'loss': loss, # required
|
|
'prog': {'tng_loss': loss, 'batch_nb': batch_nb} # optional
|
|
}
|
|
|
|
# return a dict
|
|
return output
|
|
```
|
|
|
|
---
|
|
|
|
### validation_step
|
|
|
|
``` {.python}
|
|
def validation_step(self, data_batch, batch_nb)
|
|
```
|
|
|
|
In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something specific to your model.
|
|
This is most likely the same as your training_step. But unlike training step, the outputs from here will go to validation_end for collation.
|
|
|
|
**Params**
|
|
|
|
| Param | description |
|
|
|---|---|
|
|
| data_batch | The output of your dataloader. A tensor, tuple or list |
|
|
| batch_nb | Integer displaying which batch this is |
|
|
|
|
**Return**
|
|
|
|
| Return | description | optional |
|
|
|---|---|---|
|
|
| dict | Dict of OrderedDict with metrics to display in progress bar. All keys must be tensors. | Y |
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def validation_step(self, data_batch, batch_nb):
|
|
x, y, z = data_batch
|
|
|
|
# implement your own
|
|
out = self.forward(x)
|
|
loss = self.loss(out, x)
|
|
|
|
# calculate acc
|
|
labels_hat = torch.argmax(out, dim=1)
|
|
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
|
|
|
# all optional...
|
|
# return whatever you need for the collation function validation_end
|
|
output = OrderedDict({
|
|
'val_loss': loss_val,
|
|
'val_acc': torch.tensor(val_acc), # everything must be a tensor
|
|
})
|
|
|
|
# return an optional dict
|
|
return output
|
|
```
|
|
|
|
---
|
|
### validation_end
|
|
|
|
``` {.python}
|
|
def validation_end(self, outputs)
|
|
```
|
|
|
|
Called at the end of the validation loop with the output of each validation_step.
|
|
|
|
**Params**
|
|
|
|
| Param | description |
|
|
|---|---|
|
|
| outputs | List of outputs you defined in validation_step |
|
|
|
|
**Return**
|
|
|
|
| Return | description | optional |
|
|
|---|---|---|
|
|
| dict | Dict of OrderedDict with metrics to display in progress bar | Y |
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def validation_end(self, outputs):
|
|
"""
|
|
Called at the end of validation to aggregate outputs
|
|
:param outputs: list of individual outputs of each validation step
|
|
:return:
|
|
"""
|
|
val_loss_mean = 0
|
|
val_acc_mean = 0
|
|
for output in outputs:
|
|
val_loss_mean += output['val_loss']
|
|
val_acc_mean += output['val_acc']
|
|
|
|
val_loss_mean /= len(outputs)
|
|
val_acc_mean /= len(outputs)
|
|
tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()}
|
|
return tqdm_dic
|
|
```
|
|
|
|
---
|
|
### configure_optimizers
|
|
|
|
``` {.python}
|
|
def configure_optimizers(self)
|
|
```
|
|
|
|
Set up as many optimizers as you need. Normally you'd need one. But in the case of GANs or something more esoteric you might have multiple.
|
|
Lightning will call .backward() and .step() on each one. If you use 16 bit precision it will also handle that.
|
|
|
|
|
|
##### Return
|
|
List - List of optimizers
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
# most cases
|
|
def configure_optimizers(self):
|
|
opt = Adam(lr=0.01)
|
|
return [opt]
|
|
|
|
# gan example
|
|
def configure_optimizers(self):
|
|
generator_opt = Adam(lr=0.01)
|
|
disriminator_opt = Adam(lr=0.02)
|
|
return [generator_opt, disriminator_opt]
|
|
```
|
|
|
|
---
|
|
### get_save_dict
|
|
|
|
``` {.python}
|
|
def get_save_dict(self)
|
|
```
|
|
Called by lightning to checkpoint your model. Lightning saves current epoch, current batch nb, etc...
|
|
All you have to return is what specifically about your lightning model you want to checkpoint.
|
|
|
|
##### Return
|
|
Dictionary - No required keys. Most of the time as described in this example.
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def get_save_dict(self):
|
|
# 99% of use cases this is all you need to return
|
|
checkpoint = {'state_dict': self.state_dict()}
|
|
return checkpoint
|
|
```
|
|
|
|
---
|
|
### load_model_specific
|
|
|
|
``` {.python}
|
|
def load_model_specific(self, checkpoint)
|
|
```
|
|
Called by lightning to restore your model. This is your chance to restore your model using the keys you added in get_save_dict.
|
|
Lightning will automatically restore current epoch, batch nb, etc.
|
|
|
|
##### Return
|
|
Nothing
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def load_model_specific(self, checkpoint):
|
|
# you defined 'state_dict' in get_save_dict()
|
|
self.load_state_dict(checkpoint['state_dict'])
|
|
```
|
|
|
|
---
|
|
### tng_dataloader
|
|
|
|
``` {.python}
|
|
@property
|
|
def tng_dataloader(self)
|
|
```
|
|
Called by lightning during training loop. Define it as a property.
|
|
|
|
##### Return
|
|
Pytorch DataLoader
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
@property
|
|
def tng_dataloader(self):
|
|
if self._tng_dataloader is None:
|
|
try:
|
|
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
|
|
dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True)
|
|
loader = torch.utils.data.DataLoader(
|
|
dataset=dataset,
|
|
batch_size=self.hparams.batch_size,
|
|
shuffle=True
|
|
)
|
|
self._tng_dataloader = loader
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return self._tng_dataloader
|
|
```
|
|
|
|
---
|
|
### val_dataloader
|
|
|
|
``` {.python}
|
|
@property
|
|
def tng_dataloader(self)
|
|
```
|
|
Called by lightning during validation loop. Define it as a property.
|
|
|
|
##### Return
|
|
Pytorch DataLoader
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
@property
|
|
def val_dataloader(self):
|
|
if self._val_dataloader is None:
|
|
try:
|
|
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
|
|
dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True)
|
|
loader = torch.utils.data.DataLoader(
|
|
dataset=dataset,
|
|
batch_size=self.hparams.batch_size,
|
|
shuffle=True
|
|
)
|
|
self._val_dataloader = loader
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return self._val_dataloader
|
|
```
|
|
|
|
---
|
|
### test_dataloader
|
|
|
|
``` {.python}
|
|
@property
|
|
def test_dataloader(self)
|
|
```
|
|
Called by lightning during test loop. Define it as a property.
|
|
|
|
##### Return
|
|
Pytorch DataLoader
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
@property
|
|
def test_dataloader(self):
|
|
if self._test_dataloader is None:
|
|
try:
|
|
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
|
|
dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True)
|
|
loader = torch.utils.data.DataLoader(
|
|
dataset=dataset,
|
|
batch_size=self.hparams.batch_size,
|
|
shuffle=True
|
|
)
|
|
self._test_dataloader = loader
|
|
except Exception as e:
|
|
raise e
|
|
|
|
return self._test_dataloader
|
|
```
|
|
|
|
---
|
|
### update_tng_log_metrics
|
|
|
|
``` {.python}
|
|
def update_tng_log_metrics(self, logs)
|
|
```
|
|
Called by lightning right before it logs metrics for this batch.
|
|
This is a chance to ammend or add to the metrics about to be logged.
|
|
|
|
##### Return
|
|
Dict
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
def update_tng_log_metrics(self, logs):
|
|
# modify or add to logs
|
|
return logs
|
|
```
|
|
|
|
---
|
|
### add_model_specific_args
|
|
|
|
``` {.python}
|
|
@staticmethod
|
|
def add_model_specific_args(parent_parser, root_dir)
|
|
```
|
|
Lightning has a list of default argparse commands.
|
|
This method is your chance to add or modify commands specific to your model.
|
|
The argument parser is available anywhere in your model by calling self.hparams
|
|
|
|
##### Return
|
|
An argument parser
|
|
|
|
**Example**
|
|
|
|
``` {.python}
|
|
@staticmethod
|
|
def add_model_specific_args(parent_parser, root_dir):
|
|
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
|
|
|
|
# param overwrites
|
|
# parser.set_defaults(gradient_clip=5.0)
|
|
|
|
# network params
|
|
parser.opt_list('--drop_prob', default=0.2, options=[0.2, 0.5], type=float, tunable=False)
|
|
parser.add_argument('--in_features', default=28*28)
|
|
parser.add_argument('--out_features', default=10)
|
|
parser.add_argument('--hidden_dim', default=50000) # use 500 for CPU, 50000 for GPU to see speed difference
|
|
|
|
# data
|
|
parser.add_argument('--data_root', default=os.path.join(root_dir, 'mnist'), type=str)
|
|
|
|
# training params (opt)
|
|
parser.opt_list('--learning_rate', default=0.001, type=float, options=[0.0001, 0.0005, 0.001, 0.005],
|
|
tunable=False)
|
|
parser.opt_list('--batch_size', default=256, type=int, options=[32, 64, 128, 256], tunable=False)
|
|
parser.opt_list('--optimizer_name', default='adam', type=str, options=['adam'], tunable=False)
|
|
return parser
|
|
```
|