lightning/tests/test_amp.py

189 lines
4.8 KiB
Python

import os
import pytest
import tests.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.testing import (
LightningTestModel,
)
from pytorch_lightning.utilities.debugging import MisconfigurationException
def test_amp_single_gpu(tmpdir):
"""Make sure DDP + AMP work."""
tutils.reset_seed()
if not tutils.can_run_gpu_test():
return
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
default_save_path=tmpdir,
show_progress_bar=True,
max_num_epochs=1,
gpus=1,
distributed_backend='ddp',
use_amp=True
)
tutils.run_model_test(trainer_options, model)
def test_no_amp_single_gpu(tmpdir):
"""Make sure DDP + AMP work."""
tutils.reset_seed()
if not tutils.can_run_gpu_test():
return
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
default_save_path=tmpdir,
show_progress_bar=True,
max_num_epochs=1,
gpus=1,
distributed_backend='dp',
use_amp=True
)
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
tutils.run_model_test(trainer_options, model)
def test_amp_gpu_ddp(tmpdir):
"""Make sure DDP + AMP work."""
if not tutils.can_run_gpu_test():
return
tutils.reset_seed()
tutils.set_random_master_port()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
default_save_path=tmpdir,
show_progress_bar=True,
max_num_epochs=1,
gpus=2,
distributed_backend='ddp',
use_amp=True
)
tutils.run_model_test(trainer_options, model)
def test_amp_gpu_ddp_slurm_managed(tmpdir):
"""Make sure DDP + AMP work."""
if not tutils.can_run_gpu_test():
return
tutils.reset_seed()
# simulate setting slurm flags
tutils.set_random_master_port()
os.environ['SLURM_LOCALID'] = str(0)
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
show_progress_bar=True,
max_num_epochs=1,
gpus=[0],
distributed_backend='ddp',
use_amp=True
)
# exp file to get meta
logger = tutils.get_test_tube_logger(tmpdir, False)
# exp file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# add these to the trainer options
trainer_options['checkpoint_callback'] = checkpoint
trainer_options['logger'] = logger
# fit model
trainer = Trainer(**trainer_options)
trainer.is_slurm_managing_tasks = True
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test root model address
assert trainer.resolve_root_node_address('abc') == 'abc'
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
# test model loading with a map_location
pretrained_model = tutils.load_model(logger.experiment, trainer.checkpoint_callback.filepath)
# test model preds
for dataloader in trainer.get_test_dataloaders():
tutils.run_prediction(dataloader, pretrained_model)
if trainer.use_ddp:
# on hpc this would work fine... but need to hack it for the purpose of the test
trainer.model = pretrained_model
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
# test HPC loading / saving
trainer.hpc_save(tmpdir, logger)
trainer.hpc_load(tmpdir, on_gpu=True)
# test freeze on gpu
model.freeze()
model.unfreeze()
def test_cpu_model_with_amp(tmpdir):
"""Make sure model trains on CPU."""
tutils.reset_seed()
trainer_options = dict(
default_save_path=tmpdir,
show_progress_bar=False,
logger=tutils.get_test_tube_logger(tmpdir),
max_num_epochs=1,
train_percent_check=0.4,
val_percent_check=0.4,
use_amp=True
)
model, hparams = tutils.get_model()
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
tutils.run_model_test(trainer_options, model, on_gpu=False)
def test_amp_gpu_dp(tmpdir):
"""Make sure DP + AMP work."""
tutils.reset_seed()
if not tutils.can_run_gpu_test():
return
model, hparams = tutils.get_model()
trainer_options = dict(
default_save_path=tmpdir,
max_num_epochs=1,
gpus='0, 1', # test init with gpu string
distributed_backend='dp',
use_amp=True
)
with pytest.raises(MisconfigurationException):
tutils.run_model_test(trainer_options, model, hparams)
if __name__ == '__main__':
pytest.main([__file__])