import os import pytest import tests.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.testing import ( LightningTestModel, ) from pytorch_lightning.utilities.debugging import MisconfigurationException def test_amp_single_gpu(tmpdir): """Make sure DDP + AMP work.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( default_save_path=tmpdir, show_progress_bar=True, max_num_epochs=1, gpus=1, distributed_backend='ddp', use_amp=True ) tutils.run_model_test(trainer_options, model) def test_no_amp_single_gpu(tmpdir): """Make sure DDP + AMP work.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( default_save_path=tmpdir, show_progress_bar=True, max_num_epochs=1, gpus=1, distributed_backend='dp', use_amp=True ) with pytest.raises((MisconfigurationException, ModuleNotFoundError)): tutils.run_model_test(trainer_options, model) def test_amp_gpu_ddp(tmpdir): """Make sure DDP + AMP work.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( default_save_path=tmpdir, show_progress_bar=True, max_num_epochs=1, gpus=2, distributed_backend='ddp', use_amp=True ) tutils.run_model_test(trainer_options, model) def test_amp_gpu_ddp_slurm_managed(tmpdir): """Make sure DDP + AMP work.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() # simulate setting slurm flags tutils.set_random_master_port() os.environ['SLURM_LOCALID'] = str(0) hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( show_progress_bar=True, max_num_epochs=1, gpus=[0], distributed_backend='ddp', use_amp=True ) # exp file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # add these to the trainer options trainer_options['checkpoint_callback'] = checkpoint trainer_options['logger'] = logger # fit model trainer = Trainer(**trainer_options) trainer.is_slurm_managing_tasks = True result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test root model address assert trainer.resolve_root_node_address('abc') == 'abc' assert trainer.resolve_root_node_address('abc[23]') == 'abc23' assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23' assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23' # test model loading with a map_location pretrained_model = tutils.load_model(logger.experiment, trainer.checkpoint_callback.filepath) # test model preds for dataloader in trainer.get_test_dataloaders(): tutils.run_prediction(dataloader, pretrained_model) if trainer.use_ddp: # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() # test HPC loading / saving trainer.hpc_save(tmpdir, logger) trainer.hpc_load(tmpdir, on_gpu=True) # test freeze on gpu model.freeze() model.unfreeze() def test_cpu_model_with_amp(tmpdir): """Make sure model trains on CPU.""" tutils.reset_seed() trainer_options = dict( default_save_path=tmpdir, show_progress_bar=False, logger=tutils.get_test_tube_logger(tmpdir), max_num_epochs=1, train_percent_check=0.4, val_percent_check=0.4, use_amp=True ) model, hparams = tutils.get_model() with pytest.raises((MisconfigurationException, ModuleNotFoundError)): tutils.run_model_test(trainer_options, model, on_gpu=False) def test_amp_gpu_dp(tmpdir): """Make sure DP + AMP work.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return model, hparams = tutils.get_model() trainer_options = dict( default_save_path=tmpdir, max_num_epochs=1, gpus='0, 1', # test init with gpu string distributed_backend='dp', use_amp=True ) with pytest.raises(MisconfigurationException): tutils.run_model_test(trainer_options, model, hparams) if __name__ == '__main__': pytest.main([__file__])