lightning/docs/source-pytorch/extensions/plugins.rst

123 lines
3.0 KiB
ReStructuredText

.. _plugins:
#######
Plugins
#######
.. include:: ../links.rst
Plugins allow custom integrations to the internals of the Trainer such as custom precision, checkpointing or
cluster environment implementation.
Under the hood, the Lightning Trainer is using plugins in the training routine, added automatically
depending on the provided Trainer arguments.
There are three types of Plugins in Lightning with different responsibilities:
- Precision Plugins
- CheckpointIO Plugins
- Cluster Environments
You can make the Trainer use one or multiple plugins by adding it to the ``plugins`` argument like so:
.. code-block:: python
trainer = Trainer(plugins=[plugin1, plugin2, ...])
By default, the plugins get selected based on the rest of the Trainer settings such as the ``strategy``.
-----------
.. _precision-plugins:
*****************
Precision Plugins
*****************
We provide precision plugins for you to benefit from numerical representations with lower precision than
32-bit floating-point or higher precision, such as 64-bit floating-point.
.. code-block:: python
# Training with 16-bit precision
trainer = Trainer(precision=16)
The full list of built-in precision plugins is listed below.
.. currentmodule:: pytorch_lightning.plugins.precision
.. autosummary::
:nosignatures:
:template: classtemplate.rst
ApexMixedPrecisionPlugin
ColossalAIPrecisionPlugin
DeepSpeedPrecisionPlugin
DoublePrecisionPlugin
FullyShardedNativeMixedPrecisionPlugin
FullyShardedNativeNativeMixedPrecisionPlugin
HPUPrecisionPlugin
IPUPrecisionPlugin
NativeMixedPrecisionPlugin
PrecisionPlugin
ShardedNativeMixedPrecisionPlugin
TPUBf16PrecisionPlugin
TPUPrecisionPlugin
More information regarding precision with Lightning can be found :ref:`here <precision>`
-----------
.. _checkpoint_io_plugins:
********************
CheckpointIO Plugins
********************
As part of our commitment to extensibility, we have abstracted Lightning's checkpointing logic into the :class:`~pytorch_lightning.plugins.io.CheckpointIO` plugin.
With this, you have the ability to customize the checkpointing logic to match the needs of your infrastructure.
Below is a list of built-in plugins for checkpointing.
.. currentmodule:: pytorch_lightning.plugins.io
.. autosummary::
:nosignatures:
:template: classtemplate.rst
AsyncCheckpointIO
CheckpointIO
HPUCheckpointIO
TorchCheckpointIO
XLACheckpointIO
Learn more about custom checkpointing with Lightning :ref:`here <checkpointing_expert>`.
-----------
.. _cluster_environment_plugins:
********************
Cluster Environments
********************
You can define the interface of your own cluster environment based on the requirements of your infrastructure.
.. currentmodule:: pytorch_lightning.plugins.environments
.. autosummary::
:nosignatures:
:template: classtemplate.rst
ClusterEnvironment
KubeflowEnvironment
LightningEnvironment
LSFEnvironment
SLURMEnvironment
TorchElasticEnvironment
XLAEnvironment