.. _plugins: ####### Plugins ####### .. include:: ../links.rst Plugins allow custom integrations to the internals of the Trainer such as custom precision, checkpointing or cluster environment implementation. Under the hood, the Lightning Trainer is using plugins in the training routine, added automatically depending on the provided Trainer arguments. There are three types of Plugins in Lightning with different responsibilities: - Precision Plugins - CheckpointIO Plugins - Cluster Environments You can make the Trainer use one or multiple plugins by adding it to the ``plugins`` argument like so: .. code-block:: python trainer = Trainer(plugins=[plugin1, plugin2, ...]) By default, the plugins get selected based on the rest of the Trainer settings such as the ``strategy``. ----------- .. _precision-plugins: ***************** Precision Plugins ***************** We provide precision plugins for you to benefit from numerical representations with lower precision than 32-bit floating-point or higher precision, such as 64-bit floating-point. .. code-block:: python # Training with 16-bit precision trainer = Trainer(precision=16) The full list of built-in precision plugins is listed below. .. currentmodule:: pytorch_lightning.plugins.precision .. autosummary:: :nosignatures: :template: classtemplate.rst ApexMixedPrecisionPlugin ColossalAIPrecisionPlugin DeepSpeedPrecisionPlugin DoublePrecisionPlugin FullyShardedNativeMixedPrecisionPlugin FullyShardedNativeNativeMixedPrecisionPlugin HPUPrecisionPlugin IPUPrecisionPlugin NativeMixedPrecisionPlugin PrecisionPlugin ShardedNativeMixedPrecisionPlugin TPUBf16PrecisionPlugin TPUPrecisionPlugin More information regarding precision with Lightning can be found :ref:`here ` ----------- .. _checkpoint_io_plugins: ******************** CheckpointIO Plugins ******************** As part of our commitment to extensibility, we have abstracted Lightning's checkpointing logic into the :class:`~pytorch_lightning.plugins.io.CheckpointIO` plugin. With this, you have the ability to customize the checkpointing logic to match the needs of your infrastructure. Below is a list of built-in plugins for checkpointing. .. currentmodule:: pytorch_lightning.plugins.io .. autosummary:: :nosignatures: :template: classtemplate.rst AsyncCheckpointIO CheckpointIO HPUCheckpointIO TorchCheckpointIO XLACheckpointIO Learn more about custom checkpointing with Lightning :ref:`here `. ----------- .. _cluster_environment_plugins: ******************** Cluster Environments ******************** You can define the interface of your own cluster environment based on the requirements of your infrastructure. .. currentmodule:: pytorch_lightning.plugins.environments .. autosummary:: :nosignatures: :template: classtemplate.rst ClusterEnvironment KubeflowEnvironment LightningEnvironment LSFEnvironment SLURMEnvironment TorchElasticEnvironment XLAEnvironment