lightning/tests
Justus Schock bd49b07fbb
Rework of Sklearn Metrics (#1327)
* Create utils.py

* Create __init__.py

* redo sklearn metrics

* add some more metrics

* add sklearn metrics

* Create __init__.py

* redo sklearn metrics

* New metric classes (#1326)

* Create metrics package

* Create metric.py

* Create utils.py

* Create __init__.py

* add tests for metric utils

* add docstrings for metrics utils

* add function to recursively apply other function to collection

* add tests for this function

* update test

* Update pytorch_lightning/metrics/metric.py

Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com>

* update metric name

* remove example docs

* fix tests

* add metric tests

* fix to tensor conversion

* fix apply to collection

* Update CHANGELOG.md

* Update pytorch_lightning/metrics/metric.py

Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com>

* remove tests from init

* add missing type annotations

* rename utils to convertors

* Create metrics.rst

* Update index.rst

* Update index.rst

* Update pytorch_lightning/metrics/convertors.py

Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com>

* Update pytorch_lightning/metrics/convertors.py

Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com>

* add doctest example

* rename file and fix imports

* added parametrized test

* replace lambda with inlined function

* rename apply_to_collection to apply_func

* Separated class description from init args

* Apply suggestions from code review

Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com>

* adjust random values

* suppress output when seeding

* remove gpu from doctest

* Add requested changes and add ellipsis for doctest

* forgot to push these files...

* add explicit check for dtype to convert to

* fix ddp tests

* remove explicit ddp destruction

Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>

* add sklearn metrics

* start adding sklearn tests

* fix typo

* return x and y only for curves

* fix typo

* add missing tests for sklearn funcs

* imports

* __all__

* imports

* fix sklearn arguments

* fix imports

* update requirements

* Update CHANGELOG.md

* Update test_sklearn_metrics.py

* formatting

* formatting

* format

* fix all warnings and formatting problems

* Update environment.yml

* Update requirements-extra.txt

* Update environment.yml

* Update requirements-extra.txt

* fix all warnings and formatting problems

* Update CHANGELOG.md

* docs

* inherit

* docs inherit.

* docs

* Apply suggestions from code review

Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>

* docs

* req

* min

* Apply suggestions from code review

Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Jirka <jirka@pytorchlightning.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
Co-authored-by: Tullie Murrell <tulliemurrell@gmail.com>
2020-06-10 15:43:12 +02:00
..
base update hparams, allow OmegaConf (#2047) 2020-06-08 07:19:34 -04:00
callbacks temporarily fixes early stopping bug (#2119) 2020-06-08 19:28:26 -04:00
loggers update hparams, allow OmegaConf (#2047) 2020-06-08 07:19:34 -04:00
metrics Rework of Sklearn Metrics (#1327) 2020-06-10 15:43:12 +02:00
models test cloudpickle (#2105) 2020-06-09 16:51:30 -04:00
trainer test cloudpickle (#2105) 2020-06-09 16:51:30 -04:00
utilities New metric classes (#1326) (#1877) 2020-05-19 11:05:07 -04:00
Dockerfile Tests/docker (#1573) 2020-04-23 12:52:59 -04:00
README.md increase acc (#2039) 2020-06-03 08:28:19 -04:00
__init__.py
collect_env_details.py cleaning (#2030) 2020-06-04 11:25:07 -04:00
conftest.py test deprecation warnings (#1470) 2020-04-23 17:34:47 -04:00
install_AMP.sh
requirements-devel.txt test cloudpickle (#2105) 2020-06-09 16:51:30 -04:00
requirements.txt Rework of Sklearn Metrics (#1327) 2020-06-10 15:43:12 +02:00
test_deprecated.py cleaning (#2030) 2020-06-04 11:25:07 -04:00
test_profiler.py RC & Docs/changelog (#1776) 2020-05-11 21:57:53 -04:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash tests/install_AMP.sh

# install dev deps
pip install -r tests/requirements-devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under tests/requirements-devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-pt_1_4 -f tests/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-pt_1_4 bash
docker image rm pytorch_lightning:devel-pt_1_4