lightning/pytorch_lightning/plugins/precision/sharded_native_amp.py

49 lines
1.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import cast, TYPE_CHECKING, Union
from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE
if _NATIVE_AMP_AVAILABLE and _FAIRSCALE_AVAILABLE:
from fairscale.optim import OSS
from fairscale.optim.grad_scaler import ShardedGradScaler
if TYPE_CHECKING:
from torch.optim import Optimizer
from pytorch_lightning.core import LightningModule
class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin):
"""Mixed Precision for Sharded Training
"""
def __init__(self) -> None:
super().__init__()
self.scaler = ShardedGradScaler()
def clip_gradients(
self,
model: 'LightningModule',
optimizer: 'Optimizer',
clip_val: Union[int, float],
norm_type: float = 2.0
) -> None:
if clip_val <= 0:
return
optimizer = cast(OSS, optimizer)
optimizer.clip_grad_norm(clip_val, norm_type=norm_type)