# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import cast, TYPE_CHECKING, Union from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE if _NATIVE_AMP_AVAILABLE and _FAIRSCALE_AVAILABLE: from fairscale.optim import OSS from fairscale.optim.grad_scaler import ShardedGradScaler if TYPE_CHECKING: from torch.optim import Optimizer from pytorch_lightning.core import LightningModule class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin): """Mixed Precision for Sharded Training """ def __init__(self) -> None: super().__init__() self.scaler = ShardedGradScaler() def clip_gradients( self, model: 'LightningModule', optimizer: 'Optimizer', clip_val: Union[int, float], norm_type: float = 2.0 ) -> None: if clip_val <= 0: return optimizer = cast(OSS, optimizer) optimizer.clip_grad_norm(clip_val, norm_type=norm_type)