lightning/tests/tests_pytorch/strategies/test_ddp_strategy.py

255 lines
8.5 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from datetime import timedelta
from unittest import mock
import pytest
import torch
from torch.nn.parallel import DistributedDataParallel
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.plugins.environments import ClusterEnvironment, LightningEnvironment
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.trainer.states import TrainerFn
from tests_pytorch.helpers.runif import RunIf
class BoringModelGPU(BoringModel):
def on_train_start(self) -> None:
# make sure that the model is on GPU when training
assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}")
self.start_cuda_memory = torch.cuda.memory_allocated()
@RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True)
def test_ddp_with_2_gpus():
"""Tests if device is set correctly when training and after teardown for DDPStrategy."""
trainer = Trainer(
accelerator="gpu",
devices=2,
strategy="ddp",
fast_dev_run=True,
enable_progress_bar=False,
enable_model_summary=False,
)
# assert strategy attributes for device setting
assert isinstance(trainer.strategy, DDPStrategy)
local_rank = trainer.strategy.local_rank
assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}")
model = BoringModelGPU()
trainer.fit(model)
# assert after training, model is moved to CPU and memory is deallocated
assert model.device == torch.device("cpu")
cuda_memory = torch.cuda.memory_allocated()
assert cuda_memory < model.start_cuda_memory
class BarrierModel(BoringModel):
def setup(self, stage=None):
assert not isinstance(self.trainer.strategy.model, DistributedDataParallel)
self.trainer.strategy.barrier("barrier before model is wrapped")
def on_train_start(self):
assert isinstance(self.trainer.strategy.model, DistributedDataParallel)
self.trainer.strategy.barrier("barrier after model is wrapped")
@RunIf(min_cuda_gpus=4, standalone=True)
@mock.patch("torch.distributed.barrier")
def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir):
"""Test correct usage of barriers when device ids do not start at 0 or are not consecutive."""
model = BoringModel()
gpus = [1, 3]
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
accelerator="gpu",
devices=gpus,
strategy="ddp",
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]])
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
def test_incorrect_ddp_script_spawning(tmpdir):
"""Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0."""
class WronglyImplementedEnvironment(LightningEnvironment):
@property
def creates_processes_externally(self):
# returning false no matter what means Lightning would spawn also on ranks > 0 new processes
return False
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
strategy="ddp",
accelerator="cpu",
devices=2,
plugins=[WronglyImplementedEnvironment()],
)
with pytest.raises(
RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`."
):
trainer.fit(model)
@RunIf(skip_windows=True)
def test_ddp_configure_ddp():
"""Tests with ddp strategy."""
model = BoringModel()
ddp_strategy = DDPStrategy()
trainer = Trainer(
max_epochs=1,
strategy=ddp_strategy,
)
# test wrap the model if fitting
trainer.state.fn = TrainerFn.FITTING
trainer.strategy.connect(model)
trainer.lightning_module.trainer = trainer
trainer.strategy.setup_environment()
assert isinstance(trainer.model, LightningModule)
trainer.strategy.setup(trainer)
# in DDPStrategy configure_ddp(), model wrapped by DistributedDataParallel
assert isinstance(trainer.model, DistributedDataParallel)
ddp_strategy = DDPStrategy()
trainer = Trainer(
max_epochs=1,
strategy=ddp_strategy,
)
# test do not wrap the model if TrainerFn is not fitting
trainer.state.fn = TrainerFn.VALIDATING
trainer.strategy.connect(model)
trainer.lightning_module.trainer = trainer
trainer.strategy.setup_environment()
trainer.strategy.setup(trainer)
# in DDPStrategy configure_ddp(), model are still LightningModule
assert isinstance(trainer.model, LightningModule)
@RunIf(min_cuda_gpus=1)
@pytest.mark.parametrize(
"trainer_fn", (TrainerFn.VALIDATING, TrainerFn.TUNING, TrainerFn.TESTING, TrainerFn.PREDICTING)
)
def test_ddp_dont_configure_sync_batchnorm(trainer_fn):
model = BoringModelGPU()
model.layer = torch.nn.BatchNorm1d(10)
ddp_strategy = DDPStrategy()
trainer = Trainer(accelerator="gpu", devices=1, strategy=ddp_strategy, sync_batchnorm=True)
trainer.state.fn = trainer_fn
trainer.strategy.connect(model)
trainer.lightning_module.trainer = trainer
trainer.strategy.setup_environment()
assert isinstance(trainer.model, LightningModule)
trainer.strategy.setup(trainer)
# because TrainerFn is not FITTING, model is not configured with sync batchnorm
assert not isinstance(trainer.strategy.model.layer, torch.nn.modules.batchnorm.SyncBatchNorm)
class CheckOptimizerDeviceModel(BoringModel):
def configure_optimizers(self):
assert all(param.device.type == "cuda" for param in self.parameters())
super().configure_optimizers()
@RunIf(min_cuda_gpus=1)
@pytest.mark.parametrize("strategy", ("ddp", "ddp_spawn"))
def test_model_parameters_on_device_for_optimizer(strategy):
"""Test that the strategy has moved the parameters to the device by the time the optimizer gets created."""
model = CheckOptimizerDeviceModel()
trainer = Trainer(
default_root_dir=os.getcwd(),
fast_dev_run=1,
accelerator="gpu",
devices=1,
strategy=strategy,
)
trainer.fit(model)
def test_configure_launcher_create_processes_externally():
class MyClusterEnvironment(ClusterEnvironment):
@property
def creates_processes_externally(self):
return True
@property
def main_address(self):
return ""
@property
def main_port(self):
return 8080
@staticmethod
def detect():
return True
def world_size(self):
return 1
def set_world_size(self):
pass
def global_rank(self):
return 0
def set_global_rank(self):
pass
def local_rank(self):
return 0
def node_rank(self):
return 0
ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment())
assert ddp_strategy.launcher is None
ddp_strategy._configure_launcher()
assert ddp_strategy.launcher is None
@RunIf(min_cuda_gpus=1)
@mock.patch("torch.distributed.init_process_group")
def test_ddp_strategy_set_timeout(mock_init_process_group):
"""Tests with ddp strategy."""
test_timedelta = timedelta(seconds=30)
model = BoringModel()
ddp_strategy = DDPStrategy(timeout=test_timedelta)
trainer = Trainer(
max_epochs=1,
strategy=ddp_strategy,
)
# test wrap the model if fitting
trainer.state.fn = TrainerFn.FITTING
trainer.strategy.connect(model)
trainer.lightning_module.trainer = trainer
trainer.strategy.setup_environment()
process_group_backend = trainer.strategy._get_process_group_backend()
global_rank = trainer.strategy.cluster_environment.global_rank()
world_size = trainer.strategy.cluster_environment.world_size()
mock_init_process_group.assert_called_with(
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
)